长链硅烷改性杨木纤维的制备及其表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Characterization of Long-chain Silanes Modified Poplar Wood Fiber
  • 作者:马红亮 ; 陈健 ; 焦健 ; 邓拥军 ; 孔振武 ; 房桂干
  • 英文作者:MA Hongliang;CHEN Jian;JIAO Jian;DENG Yongjun;KONG Zhenwu;FANG Guigan;Institute of Chemical Industry of Forest Products,CAF,National Engineering Lab. for Biomass Chemical Utilization,Key Lab. of Chemical Engineering of Forest Products,National Forestry and Grassland Administration,Key Lab. of Biomass Energy and Material,Jiangsu Province;Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,Nanjing Forestry University;
  • 关键词:长链硅烷 ; 杨木纤维 ; 表面改性 ; 疏水性 ; 喷雾法
  • 英文关键词:long-chain silane;;poplar wood fiber;;surface modification;;hydrophobicity;;spray method
  • 中文刊名:LCHX
  • 英文刊名:Chemistry and Industry of Forest Products
  • 机构:中国林业科学研究院林产化学工业研究所生物质化学利用国家工程实验室国家林业和草原局林产化学工程重点实验室江苏省生物质能源与材料重点实验室;南京林业大学江苏省林业资源高效加工利用协同创新中心;
  • 出版日期:2019-06-28
  • 出版单位:林产化学与工业
  • 年:2019
  • 期:v.39;No.179
  • 基金:国家重点研发计划项目子课题(2017YFD0601004)
  • 语种:中文;
  • 页:LCHX201903006
  • 页数:9
  • CN:03
  • ISSN:32-1149/S
  • 分类号:29-37
摘要
分别以十六烷基三甲氧基硅烷(HDS)和1H,1H,2H,2H-全氟十七烷三甲基氧硅烷(FDS)为改性剂、乙醇/水溶液为分散介质,采用浸渍法和喷雾法对杨木纤维(PWF)表面改性,制得HDS浸渍改性杨木纤维(HPWF)、FDS浸渍改性杨木纤维(FPWF1)和FDS喷雾改性杨木纤维(FPWF2)。考察了溶剂配比、硅烷用量、硅烷水解温度和时间、反应温度及反应时间等因素对PWF表面改性效果的影响,并通过红外光谱(FT-IR)、接触角测量、X射线衍射(XRD)、X射线能谱(EDS)及扫描电镜(SEM)等方法表征了改性前后PWF的结构与表面性能,结果表明:在乙醇质量分数60%乙醇/水溶液中以HDS与PWF活性羟基物质的量比0.4∶1、HDS于60℃水解1 h,再与PWF于60℃反应1 h,所得HPWF的表面接触角达139°;在乙醇质量分数50%乙醇/水溶液中以FDS与PWF活性羟基物质的量比0.16∶1、FDS于60℃水解1 h,再与PWF于60℃反应1 h,所得FPWF1的表面接触角达141°;FDS与PWF活性羟基物质的量比0.008∶1,经喷雾搅拌使纤维表面润湿后于120℃活化反应1.5 h,所得FPWF2的表面接触角达138°。与浸渍法相比,喷雾法具有硅烷用量小、工艺简单、清洁高效等特点。此外,改性后杨木纤维的结晶度提高(由62.1%提高到67.7%~69.7%),表面变得粗糙,比表面积增加,表面极性降低,疏水性能显著提高,有利于改善与疏水性基体树脂的界面相容性与粘结作用。
        Three kinds of modified poplar wood fibers(PWF) named hexadecyltrimethoxysilane(HDS) impregnated modified poplar fiber(HPWF), 1 H,1 H,2 H,2 H-perfluorodecyltrimethoxysilane(FDS) impregnated modified poplar fiber(FPWF1) and FDS spray modified poplar fiber(FPWF2) were obtained by respectively using HDS and FDS as modifiers and ethanol-water solution as dispersing media by impregnation and spray methods. The effects of solvent ratios, dosage of silanes, hydrolysis temperature and time of silanes, reaction temperature and time on the surface modification of PWF were studied. The chemical structures and surface properties of unmodified and modified PWF were investigated by Fourier transform infrared(FT-IR) spectroscopy, contact angle measurement, X-ray diffraction(XRD), X-ray energy dispersive spectrometer(EDS) and scanning electron microscope(SEM). HPWF was treated with HDS(hydrolyzed at 60 ℃ for 1 h) at 60 ℃ for 1 h in ethanol/water solution. The results showed that when the molar ratio of HDS to active hydroxyl of PWF was 0.4 ∶1 with ethanol mass fraction of 60%,the surface contact angle of HPWF was up to 139°; when the molar ratio of FDS to active hydroxyl of PWF was 0.16∶1 with ethanol mass fraction of 50%, the surface contact angle of FPWF1 was up to 141°. Specially, the surface contact angle of FPWF2 was up to 138° when the fiber was wetted at the molar ratio of FDS to active hydroxyl of PWF 0.008∶1, and then activated at 120 ℃ for 1.5 h. Compared with the impregnation method, the spray method had the advantages of small dosage of silane, simple process, cleanliness and high efficiency. In addition, the modified fibers had the properties of higher crystallinity(from 62.1% to 67.7%-69.7%), rougher surface, bigger specific surface area, lower surface polarity, and higher hydrophobicity, which were conducive to improving the interfacial compatibility and bonding with hydrophobic resin matrix.
引文
[1] JABBAR A,MILITK,et al.Modeling and analysis of the creep behavior of jute/green epoxy composites incorporated with chemically treated pulverized nano/micro jute fibers[J].Industrial Crops and Products,2016,84(7):230-240.
    [2] KIM J T,NETRAVALI A N.Mechanical,thermal,and interfacial properties of green composites with ramie fiber and soy resins[J].Journal of Agricultural and Food Chemistry,2010,58(9):5400-5407.
    [3] DAYO A Q,GAO B C,WANG J,et al.Natural hemp fiber reinforced polybenzoxazine composites:Curing behavior,mechanical and thermal properties[J].Composites Science and Technology,2017,144:114-124.
    [4] 鲁博,张林文,曾竟成,等.天然纤维复合材料[M].北京:化学工业出版社,2005.LU B,ZHANG L W,ZENG J C,et al.Natural Fiber Composites[M].Beijing:Chemical Industry Press,2005.
    [5] 叶代勇,黄洪,傅和青,等.纤维素化学研究进展[J].化工学报,2006,57(8):1782-1791.YE D Y,HUANG H,FU H Q,et al.Advances in cellulose chemistry[J].Journal of Chemical Engineering,2006,57(8):1782-1791.
    [6] LEE H P,NG B M P,RAMMOHAN A V,et al.An investigation of the sound absorption properties of flax/epoxy composites compared with glass/epoxy composites[J].Journal of Natural Fibers,2017,14(1):71-77.
    [7] BAKAR N A,CHEE C Y,ABDULLAH L C,et al.Thermal and dynamic mechanical properties of grafted kenaf filled poly(vinyl chloride)/ethylene vinyl acetate composites[J].Materials and Design,2015,65:204-211.
    [8] ANDREL N G,ARIAWAN D,ISHAK Z A M.Elastic anisotropy of kenaf fibre and micromechanical modeling of nonwoven kenaf fibre/epoxy composites[J].Journal of Reinforced Plastics and Composites,2016,35(19):1-10.
    [9] PINTO M,CHALIVENDRA V B,KIM Y K,et al.Improving the strength and service life of jute/epoxy laminar composites for structural applications[J].Composite Structures,2016,156:333-337.
    [10] BACHTIAR D,SAPUAN S M,HAMDAN M M.The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites[J].Materials and Design,2008,29(7):1285-1290.
    [11] LI X,TABIL L G,PANIGRAHI S.Chemical treatments of natural fiber for use in natural fiber reinforced composites:A review[J].Journal of Polymers and the Environment,2007,15(1):25-33.
    [12] KABIR M M,WANG H,LAU K T,et al.Chemical treatments on plant-based natural fiber reinforced polymer composites:An overview[J].Composites:Part B,2012,43(7):2883-2892.
    [13] 冯圣玉.有机硅高分子及其应用[M].北京:化学工业出版社,2008.FEN S Y.Organosilicon Polymers and Their Applications[M].Beijing:Chemical Industry Press,2008.
    [14] 来国桥,幸松民.有机硅产品合成工艺及应用[M].北京:化学工业出版社,2010.LAI G Q,XING S M.Synthesis and Application of Silicone Products[M].Beijing:Chemical Industry Press,2010.
    [15] 朱晓敏,章凯基.有机硅材料基础[M].北京:化学工业出版社,2013.ZHU X M,ZHANG K J.Foundation of Silicone Materials[M].Beijing:Chemical Industry Press,2013.
    [16] XIE Y,HILL C A S,XIAO Z,et al.Silane coupling agents used for natural fiber/polymer composites:A review[J].Composites:Part A,2010,41(7):806-819.
    [17] MITTAL V,SAINI R,SINHA S.Natural fiber-mediated epoxy composites:A review[J].Composites:Part B,2016,99:425-435.
    [18] SEPE R,BOLLINO F,BOCCARUSSO L,et al.Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites[J].Composites:Part B,2018,133:210-217.
    [19] ZHOU Y H,FAN M Z,LIN L Y.Investigation of bulk and in situ mechanical properties of coupling agents treated wood plastic composites[J].Polymer Testing,2017,58:292-299.
    [20] BALAN A K,PARAMBIL S M,VAKYATH S,et al.Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites:Effect of silane coupling agents on the mechanical and thermal properties of the composites[J].Journal of Materials Science,2017,52(11):6712-6725.
    [21] 马文石,时镜镜,王维,等.长链硅烷对埃洛石纳米管的表面改性研究[J].有机硅材料,2011,25(4):248-252.MA W S,SHI J J,WANG W,et al.Surface modification of long-chain alkyl silane on HNTs[J].Silicone Materials,2011,25(4):248-252.
    [22] 陈奎,李伯耿,曾光明.有机硅氧烷水解、缩聚的影响因素研究[J].化工新型材料,2010,38(1):110-111.CHEN K,LI B G,ZENG G M.Influence factors of hydrolysis and condensation of organic silicon oxygen alkyl[J].New Chemical Materials,2010,38(1):110-111.
    [23] 廖建明,栾鹏程,李军,等.表面修饰蔗渣纤维制备防水纸[J].造纸科学与技术,2017,36(5):10-13.LIAO J M,LUAN P C,LI J,et al.Preparation of waterproof paper from surface modified bagasse fiber[J].Paper Science and Technology,2017,36(5):10-13.
    [24] 耿新玲,范召东.耐热硅树脂的合成与固化性能的研究[J].有机硅材料,2006,20(1):17-21.GENG X L,FAN Z D.Research on synthesis and curing of heat-resistant silicone resin[J].Silicone Material,2006,20(1):17-21.
    [25] 刘志明,吴鹏.疏水性纤维素气凝胶球的制备及其吸附性能研究[J].林产化学与工业,2018,38(1):9-17.LIU Z M,WU P.Preparation of hydrophobic cellulose aerogel beads and its adsorption performance[J].Chemistry and Industry of Forest Products,2018,38(1):9-17.
    [26] ABDELMOULEHA M,BOUFIA S,BELGACEMB M N,et al.Modification of cellulosic fibres with functionalised silanes:Development of surface properties[J].International Journal of Adhesion & Adhesives,2004,24(1):43-54.
    [27] HE L P,LI W J,CHEN D C,et al.Effects of amino silicone oil modification on properties of ramie fiber and ramie fiber/polypropylene composites[J].Materials and Design,2015,77:142-148.
    [28] 何丽萍,周海业,李新起,等.氨基硅油改性苎麻纤维的研究[J].湖南大学学报(自然科学版),2012,39(9):72-75.HE L P,ZHOU H Y,LI X Q,et al.Modification of ramie fiber with amino silicone oil[J].Journal of Hunan University(Natural Science Edition),2012,39(9):72-75.
    [29] 詹怀宇.纤维化学与物理[M].北京:科学出版社,2005.ZHAN H Y.Fiber Chemistry and Physics[M].Beijing:Science Press,2005.
    [30] OLIVEIRA F D,SILVA C G D,RAMOS L A,et al.Phenolic and lignosulfonate-based matrices reinforced with untreated and lignosulfonate-treated sisal fibers[J].Industrial Crops and Products,2017,96:30-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700