扶手椅型单壁碳纳米管孔径对缬氨酸分子旋光异构的限域影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Confinement Effect of the Diameter of Armchair Single-Walled Carbon Nanotubes on Optical Isomerization of Valine Molecules
  • 作者:高峰 ; 潘宇 ; 乔朝阳 ; 闫红彦 ; 庄严 ; 王佐成
  • 英文作者:GAO Feng;PAN Yu;QIAO Chaoyang;YAN Hongyan;ZHUANG Yan;WANG Zuocheng;College of Physics,Baicheng Normal University;Computer Science College,Baicheng Normal University;
  • 关键词:缬氨酸 ; 旋光异构 ; 单壁碳纳米管 ; ONIOM方法 ; 密度泛函理论 ; 过渡态 ; 微扰论
  • 英文关键词:valine;;optical isomerization;;single-walled carbon nanotubes(SWCNT);;ONIOM(own N-layered integrated molecular orbital and molecular mechanics)method;;density functional theory;;transition state;;perturbation theory
  • 中文刊名:WHDY
  • 英文刊名:Journal of Wuhan University(Natural Science Edition)
  • 机构:白城师范学院物理学院;白城师范学院计算机科学学院;
  • 出版日期:2019-01-08 08:45
  • 出版单位:武汉大学学报(理学版)
  • 年:2019
  • 期:v.65;No.293
  • 基金:吉林省科技发展计划自然科学基金(20130101308JC;20160101308JC)
  • 语种:中文;
  • 页:WHDY201901001
  • 页数:10
  • CN:01
  • ISSN:42-1674/N
  • 分类号:4-13
摘要
采用量子力学与分子力学组合的ONIOM方法,研究了扶手椅型单壁碳纳米管(SWCNT)孔径对缬氨酸(valine,Val)分子两种构象Val_1和Val_2旋光异构的限域影响。结构分析表明:扶手椅型SWCNT(5,5)的限域作用致Val分子骨架明显形变,同时SWCNT(5,5)也发生了明显形变。势能面研究表明:限域在SWCNT内的Val分子以氨基氮为质子转移桥梁的旋光异构反应通道具有优势;Val_1和Val_2限域在SWCNT(5,5)内,在优势通道上旋光异构决速步骤的内禀能垒分别为340.55和361.13kJ·mol~(-1),限域在SWCNT(6,6)内,在优势通道上旋光异构决速步骤的内禀能垒分别为302.80和293.11kJ·mol~(-1),限域在SWCNT(7,7)内,在优势通道上旋光异构决速步骤的内禀能垒为265.54kJ·mol~(-1)左右。计算结果表明:SWCNT(5,5)的限域作用及其固体溶剂效应对Val分子的旋光异构反应具有显著的阻碍作用,SWCNT(5,5)可以安全地储存光学纯Val。
        Confinement effect of the diameter of armchair single-walled carbon nanotubes(SWCNT)on optical isomerization of two conformations Val_1and Val_2of valine molecules was researched by using ONIOM method.The structural analysis results show that the skeleton of valine is deformed obviously by the confinement effect of armchair SWCNT(5,5),and the SWCNT(5,5)is also deformed obviously.The potential energy surface studies show that the optical isomerization reaction channel with amino nitrogen as the proton transfer bridge is the dominant for valine molecules confined in SWCNT.When Val_1and Val_2are confined in SWCNT(5,5),the intrinsic energy barriers of rate-determining step of optical isomerization in dominant channel are 340.55 and 361.13kJ·mol~(-1),respectively;when they are confined in SWCNT(6,6),the intrinsic energy barriers are 302.80 and 293.11kJ·mol~(-1),respectively;when they are confined in SWCNT(7,7),the intrinsic energy barriers are about 265.54kJ·mol~(-1).The results show that the confinement and solid solvent effect of SWCNT(5,5)have an obvious hindrance to optical isomerization of valine molecules,and SWCNT(5,5)can safely store the valine with optical voidness.
引文
[1]漆剑.L-Val和D-Val构型转换的研究[D].南昌:南昌大学,2006.QI J.Studies on Configuration Transformation of Lproline and L-valine[D].Nanchang:Nanchang university,2006(Ch).
    [2] CHOLEWINSKI A J,REID J C,MCDERMOTT A M,et al.Purification of astroglial-cell cultures from rat spinal cord:The use of D-valine to inhibit fibroblast growth[J].Neurochemistry International,1989,15(3):365-369.DOI:10.1016/0197-0186(89)90146-0.
    [3]严传鸣.氟胺氰菊酯的合成[J].现代农药,2003,2(1):13-15.YAN C M.Synthesis of fluvalinate[J].Modern Agrochemicals,2003,2(1):13-15(Ch).
    [4] CARL P L,KATZENELLENBOGEN J A,WEBER M J,et al.Hydrolyti-cenzyme-activatible pro-drugs:WO,8101145[P].1981-04-30.
    [5]闫红彦,王佐成,邹晶,等.缬氨酸分子的手性转变及水分子的催化机理[J].中山大学学报(自然科学版),2016,55(2):68-75.DOI:10.13471/j.cnki.acta.snus.2016.02.013.YAN H Y,WANG Z C,ZOU J,et al.Chiral enantiomers transformation of valine and catalytic mechanism of water molecules[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2016,55(2):68-75.DOI:10.13471/j.cnki.acta.snus.2016.02.013(Ch).
    [6]马驰骋,蒲敏,卫敏,等.L-缬氨酸旋光异构的两种光反应可能途径[J].物理化学学报,2012,28(8):1830-1836.MA C C,PU M,WEI M,et al.Two possible photoreaction pathways of L-valine optical isomerization[J].Acta Physico-Chimica Sinica,2012,28(8):1830-1836(Ch).
    [7] NEUBERGER A.Stereochemistry of amino acids[J].Advances in Protein Chemistry,1948,4:297-283.DOI:10.1016/S0065-3233(08)60009-1.
    [8] SMITH G G,SIVAKUA T.Mechanism of the racemization of amino acids:Kinetics of racemization of arylglycines[J].Journal of Organic Chemistry,1983,48(5):627-634.DOI:10.1021/jo00153a001.
    [9]郝成欣,汤振宇,吴怡,等.具有氨基与羧基间单氢键的缬氨酸分子旋光异构及羟自由基致损伤的机理[J].复旦学报(自然科学版),2018,57(6):794-805.DOI:10.15943/j.cnki.fdxb-jns.2018.06.014.HAO C X,TANG Z Y,WU Y,et al.Mechanism of valine molecules with mono-hydrogen bonds between amino and carboxyl groups optical isomerism and the damage induced by hydroxyl radicals[J].Journal of Fudan University(Natural Science),2018,57(6):794-805.DOI:10.15943/j.cnki.fdxb-jns.2018.06.014.
    [10]WANG Z C,LIU Y F,YAN H Y,et al.Theoretical investigations of the chiral transition ofα-amino acid confined in various sized armchair boron-nitride nanotubes[J].The Journal of Physical Chemistry A,2017,121(8):1833-1840.DOI:10.1021/acs.jpca.7b00079.
    [11]王佐成,梅泽民,佟华,等.扶手椅型单壁硼氮纳米管的尺寸对α-Ala手性转变的限域影响[J].武汉大学学报(理学版),2015,61(3):239-246.DOI:10.14188/j.1671-8836.2015.03.009.WANG Z C,MEI Z M,TONG H,et al.Confined effects of dimension of the armchair single walled boron nitride nanotube on chiral transition ofα-alanine molecules[J].Journal of Wuhan University(Natural Science Edition),2015,61(3):239-246.DOI:10.14188/j.1671-8836.2015.03.009(Ch).
    [12]王佐成,梅泽民,闫红彦,等.单壁碳纳米管尺寸和手性对α-丙氨酸分子手性转变限域的影响[J].吉林大学学报(理学版),2015,53(4):791-801.DOI:10.13413/j.cnki.jdxblxb.2015.04.36.WANG Z C,MEI Z M,YAN H Y,et al.Confined effects of size and chirality of single walled carbon nanotubes on chiral transition ofα-alanine molecules[J].Journal of Jilin University(Science Edition),2015,53(4):791-801.DOI:10.13413/j.cnki.jdxblxb.2015.04.36(Ch).
    [13]SVENSSON M,HUMBEL S,FROESE R D J,et al.ONIOM:A multilayered integrated MO+MM method for geometry optimizations and single point energy predictions.A test for Diels-Alder reactions and Pt(P(tBu)3/2+H2oxidative addition[J].Journal of Physical Chemistry,1996,100(50):19357-19363.DOI:10.1021/jp962071j.
    [14]RAPPE A K,CASEWIT C J,COLWELL K S,et al.UFF,a full periodic table force field for molecular mechanics and molecular dynamics simulations[J].Journal of the American Chemical Society,1992,114(25):10024-10035.DOI:10.1021/ja00051a040.
    [15]KOBAYASHI R,AMOS R D.Erratum to the application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin-bacteriochlorin complex[J].Chemical Physics Letters,2006,420(1-3):106-109.DOI:10.1016/j.cplett.2005.12.040.
    [16]GARRETT B C,TRUHLAR D G.Criterion of minimum state density in the transition state theory of bimolecular reactions[J].The Journal of Chemical Physics,1979,70(4):1593-1598.DOI:10.1063/1.437698.
    [17]BINKLEY J S,POPLE J A.Moeller-plesset theory for atomic ground state energies[J].International Journal of Quantum Chemistry,1975,9(2):229-236.DOI:10.1002/qua.560090204.
    [18]GONZALEZ C,SCHLEGEL H B.Reaction path following in mass-weighted internal coordinates[J].Journal of Physical Chemistry,1990,94(14):5523-5527.DOI:10.1021/j100377a021.
    [19]FRISCH M J,TRUCKS G W,SCHLEGEL H B,et al.Gaussian 09 Revision E.01[CP].Pittsburgh:Gaussian Inc,2013.
    [20]黄志坚.氨基酸的构型和性质研究[D].合肥:中国科学技术大学,2006:11.HUANG Z J.Structures and Properties of the Amino Acids[D].Hefei:University of Science and Technology of China,2006:11(Ch).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700