亚洲栽培稻主要驯化性状研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Major domestication traits in Asian rice
  • 作者:区树俊 ; 汪鸿儒 ; 储成才
  • 英文作者:OU Shu-Jun 1,2,WANG Hong-Ru2,CHU Cheng-Cai2 1.School of Bioscience & Bioengineering,South China University of Technology,Guangzhou 510006,China; 2.State Key Laboratory of Plant Genomics,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China
  • 关键词:水稻驯化性状 ; 落粒性 ; 种子休眠 ; 株型 ; 功能基因组
  • 英文关键词:rice domestication trait;shattering;dormancy;plant architecture;functional genomics
  • 中文刊名:YCZZ
  • 英文刊名:Hereditas
  • 机构:华南理工大学生物科学与工程学院;中国科学院遗传与发育生物学研究所植物基因组学国家重点实验室;
  • 出版日期:2012-07-31 16:17
  • 出版单位:遗传
  • 年:2012
  • 期:v.34
  • 基金:国家自然科学基金项目(编号:31170715,30825029和30621001)资助
  • 语种:中文;
  • 页:YCZZ201211006
  • 页数:11
  • CN:11
  • ISSN:11-1913/R
  • 分类号:34-44
摘要
水稻是研究谷类作物驯化的良好材料,其中种子落粒性消失、休眠性减弱和株型上的变化是水稻驯化过程中的3个关键事件,造就了高产、发芽整齐及可密植的现代水稻。落粒性丧失一直被认为是野生稻驯化形态学上的最直接证据,而控制落粒的主要基因Sh4和qSH1分别暗示不同的水稻驯化历史。种子休眠性的减弱适应了现代农业生产上同步发芽的需求,Sdr4、qSD7-1和qSD12基因是目前已知的调控种子休眠性的3个关键位点。野生稻匍匐生长等特点与其长期所在的易变生境有关,而栽培稻的直立生长形态则适应了农业上密植生产的需要,受PROG1等基因控制。野生稻的异交特性促进了驯化基因在群体间传播,而自花授粉则使驯化基因得以稳定遗传,从而加快人工选择的累积。目前的水稻驯化研究侧重于单基因或一些中性标记,而对控制驯化性状的网络化通路的进化研究却相对缺乏。随着功能基因组研究的深入,驯化性状的分子机理将会被全面揭示,而基于此的网络化通路研究必将更加真实地反应水稻驯化过程。文章综述了水稻关键驯化性状分子机理的研究进展,为驯化基因网络的研究提供参考,也为水稻分子设计改良提供新的思路。
        Rice(Oryza sativa L.) is an excellent model plant in elucidation of cereal domestication.Loss of seed shat-tering,weakened dormancy,and changes in plant architecture were thought to be three key events in the rice domestication and creating the high-yield,uniform-germinating,and densely-planting modern rice.Loss of shattering is considered to be the direct morphological evidence for identifying domesticated rice.Two major shattering QTLs,Sh4 and qSH1,have dis-played different domestication histories.Weakened seed dormancy is essential for synchronous germination in agricultural production.Genes Sdr4,qSD7-1,and qSD12 impose a global and complementary adaptation strategies in controlling seed dormancy.The prostrate growth habit of wild rice is an adaptation to disturbed habitats,while the erect growth habit of rice cultivars meet the needs of compact planting,and such a plant architecture is mainly controlled by PROG1.The outcrossing habit of wild rice promotes propagation of domestication genes among different populations,while the self-pollinating habit of cultivated rice facilitates fixation of domestication genes.Currently,the researches on rice domestication mainly focus on individual genes or multiple neutral markers,and much less attention has been paid to the evolution of network controlling domestication traits.With the progress in functional genomics research,the molecular mechanism of domestication traits is emerging.Rice domestication researches based on network will be more comprehensive and better reflect rice domestica-tion process.Here,we reviewed most progresses in molecular mechanisms of rice domestication traits,in order to provide the new insights for rice domestication and molecular breeding.
引文
[1]Wasylikowa K,Dahlberg J.Sorghum in the economy ofthe Early Neolithic Nomadic Tribes at Nabta Playa,Southern Egypt.In:Van der Veen M,ed.The exploitationof plant resources in ancient Africa.New York:Kluwer/Plenum,1999:11–32.
    [2]Darwin C.The variation of animals and plants underdomestication.Cambridge:Cambridge University Press,2010.
    [3]Harlan JR.Crops&man.Madison,Wis:American Societyof Agronomy,1975.
    [4]Hammer K.Das Domestikationssyndrom.Genet ResourCrop Evol,1984,32(1):11–34.
    [5]Harlan JR.Crops&man(2nd ed).Madison,Wis:American Society of Agronomy,1992.
    [6]Sweeney M,McCouch S.The complex history of thedomestication of rice.Ann Bot,2007,100(5):951–957.
    [7]Vaughan DA,Lu BR,Tomooka N.Was asian rice(Oryzasativa)domesticated more than once?Rice,2008,1(1):16–24.
    [8]Vaughan DA,Morishima H,Kadowaki K.Diversity in theOryza genus.Curr Opin Plant Biol,2003,6(2):139–146.
    [9]Project IRGS.The map-based sequence of the rice genome.Nature,2005,436(7052):793–800.
    [10]Ouyang S,Zhu W,Hamilton J,Lin HN,Campbell M,Childs K,Thibaud-Nissen F,Malek RL,Lee Y,Zheng L,Orvis J,Haas B,Wortman J,Buell CR.The TIGR RiceGenome Annotation Resource:improvements and newfeatures.Nucleic Acids Res,2007,35(Database issue):D883–D887.
    [11]Li YN,Uhm T,Ren CW,Wu CC,Santos TS,Lee MK,YanB,Santos F,Zhang AM,Scheuring C,Sanchez A,MillenaAC,Nguyen HT,Kou HD,Liu DQ,Zhang HB.A plant-transformation-competent BIBAC/BAC-based map of ricefor functional analysis and genetic engineering of itsgenomic sequence.Genome,2007,50(3):278–288.
    [12]Molina J,Sikora M,Garud N,Flowers JM,Rubinstein S,Reynolds A,Huang P,Jackson S,Schaal BA,BustamanteCD,Boyko AR,Purugganan MD.Molecular evidence fora single evolutionary origin of domesticated rice.ProcNatl Acad Sci USA,2011,108(20):8351–8356.
    [13]Xu X,Liu X,Ge S,Jensen JD,Hu FY,Li X,Dong Y,Gutenkunst RN,Fang L,Huang L,Li JX,He WM,ZhangGJ,Zheng XM,Zhang FM,Li YR,Yu C,Kristiansen K,Zhang XQ,Wang J,Wright M,McCouch S,Nielsen R,Wang J,Wang W.Resequencing 50 accessions of culti-vated and wild rice yields markers for identifying agrono-mically important genes.Nat Biotechnol,2011,30(1):105–111.
    [14]Li CB,Zhou AL,Sang T.Rice domestication by reducingshattering.Science,2006,311(5769):1936–1939.
    [15]Zhang LB,Zhu QH,Wu ZQ,Ross-Ibarra J,Gaut BS,Ge S,Sang T.Selection on grain shattering genes and rates ofrice domestication.New Phytol,2009,184(3):708–720.
    [16]He ZW,Zhai WW,Wen HJ,Tang T,Wang Y,Lu XM,Green-berg AJ,Hudson RR,Wu CI,Shi SH.Two evolutionaryhistories in the genome of rice:the roles of domesticationgenes.PLoS Genet,2011,7(6):e1002100.
    [17]Kovach MJ,Sweeney MT,McCouch SR.New insightsinto the history of rice domestication.Trends Genet,2007,23(11):578–587.
    [18]姜恭好,徐才国,李香花,何予卿.利用双单倍体群体剖析水稻产量及其相关性状的遗传基础.遗传学报,2004,31(1):63–72.
    [19]Onishi K,Horiuchi Y,Ishigoh-Oka N,Takagi K,IchikawaN,Maruoka M,Sano Y.A QTL cluster for plant archite-cture and its ecological significance in asian wild rice.Breed Sci,2007,57(1):7–16.
    [20]Jiang YH,Cai ZX,Xie WB,Long T,Yu HH,Zhang QF.Rice functional genomics research:Progress and implica-tions for crop genetic improvement.Biotechnol Adv,2012,30(5):1059 1070.
    [21]Konishi S,Izawa T,Lin SY,Ebana K,Fukuta Y,Sasaki T,Yano M.An SNP caused loss of seed shattering during ricedomestication.Science,2006,312(5778):1392–1396.
    [22]Gu XY,Liu T,Feng J,Suttle JC,Gibbons J.The qSD12underlying gene promotes abscisic acid accumulation inearly developing seeds to induce primary dormancy in rice.Plant Mol Biol,2010,73(1-2):97–104.
    [23]Gu XY,Foley ME,Horvath DP,Anderson JV,Feng JH,Zhang LH,Mowry CR,Ye H,Suttle JC,Kadowaki K,Chen ZX.Association between seed dormancy and peri-carp color is controlled by a pleiotropic gene that regulatesabscisic acid and flavonoid synthesis in weedy red rice.Genetics,2011,189(4):1515–1524.
    [24]Sugimoto K,Takeuchi Y,Ebana K,Miyao A,Hirochika H,Hara N,Ishiyama K,Kobayashi M,Ban Y,Hattori T,YanoM.Molecular cloning of Sdr4,a regulator involved in seeddormancy and domestication of rice.Proc Natl Acad SciUSA,2010,107(13):5792–5797.
    [25]Jin J,Huang W,Gao JP,Yang J,Shi M,Zhu MZ,Luo D,Lin HX.Genetic control of rice plant architecture underdomestication.Nat Genet,2008,40(11):1365–1369.
    [26]Tan LB,Li XR,Liu FX,Sun XY,Li CG,Zhu ZF,Fu CY,Cai HW,Wang XK,Xie DX,Sun CQ.Control of a keytransition from prostrate to erect growth in rice domes-tication.Nat Genet,2008,40(11):1360–1364.
    [27]Spielmeyer W,Ellis MH,Chandler PM.Semidwarf(sd-1),"green revolution"rice,contains a defective gibberellin20-oxidase gene.Proc Natl Acad Sci USA,2002,99(13):9043–9048.
    [28]Wang ET,Wang JJ,Zhu XD,Hao W,Wang LY,Li Q,Zhang LX,He W,Lu BR,Lin HX,Ma H,Zhang GQ,HeZH.Control of rice grain-filling and yield by a gene with apotential signature of domestication.Nat Genet,2008,40(11):1370–1374.
    [29]Yu GQ,Olsen KM,Schaal BA.Molecular evolution of theendosperm starch synthesis pathway genes in rice(Oryzasativa L.)and its wild ancestor,O.rufipogon L.Mol BiolEvol,2011,28(1):659–671.
    [30]Zhang QF,Li JY,Xue YB,Han B,Deng XW.Rice 2020:acall for an international coordinated effort in rice func-tional genomics.Mol Plant,2008,1(5):715–719.
    [31]Han B,Xue YB,Li JY,Deng XW,Zhang QF.Ricefunctional genomics research in China.Philos Trans R SocLond B Biol Sci,2007,362(1482):1009–1021.
    [32]Fuller DQ.Contrasting patterns in crop domestication anddomestication rates:recent archaeobotanical insights fromthe Old World.Ann Bot,2007,100(5):903–924.
    [33]Fuller DQ,Qin L,Zheng YF,Zhao ZJ,Chen XG,HosoyaLA,Sun GP.The domestication process and domesticationrate in rice:spikelet bases from the Lower Yangtze.Science,2009,323(5921):1607–1610.
    [34]Lin ZW,Griffith ME,Li XR,Zhu ZF,Tan LB,Fu YC,Zhang WX,Wang XK,Xie DX,Sun CQ.Origin of seedshattering in rice(Oryza sativa L.).Planta,2007,226(1):11–20.
    [35]Seshu DV,Dadlani M.Mechanism of seed dormancy inrice.Seed Sci Res,1991,1(3):187–194.
    [36]Gu XY,Turnipseed EB,Foley ME.The qSD12 locuscontrols offspring tissue-imposed seed dormancy in rice.Genetics,2008,179(4):2263–2273.
    [37]Li CB,Zhou AL,Sang T.Genetic analysis of rice domes-tication syndrome with the wild annual species,Oryzanivara.New Phytol,2006,170(1):185–193.
    [38]Gao ZY,Qian Q,Liu XH,Yan MX,Feng Q,Dong GJ,LiuJ,Han B.Dwarf 88,a novel putative esterase gene affec-ting architecture of rice plant.Plant Mol Biol,2009,71(3):265–276.
    [39]Zhou Y,Zhu JY,Li ZY,Yi CD,Liu J,Zhang HG,Tang SZ,Gu MH,Liang GH.Deletion in a quantitative trait geneqPE9-1 associated with panicle erectness improves plantarchitecture during rice domestication.Genetics,2009,183(1):315–324.
    [40]Sakuma S,Salomon B,Komatsuda T.The domesticationsyndrome genes responsible for the major changes in plantform in the triticeae crops.Plant Cell Physiol,2011,52(5):738–749.
    [41]Yan WH,Wang P,Chen HX,Zhou HJ,Li QP,Wang CR,Ding ZH,Zhang YS,Yu SB,Xing YZ,Zhang QF.A majorQTL,Ghd8,plays pleiotropic roles in regulating grainproductivity,plant height,and heading date in rice.MolPlant,2011,4(2):319–330.
    [42]Xue WY,Xing YZ,Weng XY,Zhao Y,Tang WJ,Wang L,Zhou HJ,Yu SB,Xu CG,Li XH,Zhang QF.Naturalvariation in Ghd7 is an important regulator of heading dateand yield potential in rice.Nat Genet,2008,40(6):761–767.
    [43]Oh CS,Choi YH,Lee SJ,Yoon DB,Moon PH,Ahn SN.Mapping of quantitative trait loci for cold tolerance inweedy rice.Breeding Sci,2004,54(4):373–380.
    [44]Shimono H,Kanda E.Does regional temperaturedifference before the panicle initiation affect the tolerancefor low temperature-induced sterility in rice?Plant ProdSci,2008,11(4):430–433.
    [45]Yu BS,Lin ZW,Li HX,Li XJ,Li JY,Wang YH,Zhang X,Zhu ZF,Zhai WX,Wang XK,Xie DX,Sun CQ.TAC1,amajor quantitative trait locus controlling tiller angle inrice.Plant J,2007,52(5):891–898.
    [46]Li XY,Qian Q,Fu ZM,Wang YH,Xiong GS,Zeng DL,Wang XQ,Liu XF,Teng S,Hiroshi F,Yuan M,Luo D,Han B,Li JY.Control of tillering in rice.Nature,2003,422(6932):618–621.
    [47]Tong HN,Jin Y,Liu WB,Li F,Fang J,Yin YH,Qian Q,Zhu LH,Chu CC.DWARF AND LOW-TILLERING,anew member of the GRAS family,plays positive roles inbrassinosteroid signaling in rice.Plant J,2009,58(5):803–816.
    [48]Luo AD,Qian Q,Yin HF,Liu XQ,Yin CX,Lan Y,TangJY,Tang ZS,Cao SY,Wang XJ,Xia K,Fu XD,Luo D,Chu CC.EUI1,encoding a putative cytochrome P450monooxygenase,regulates internode elongation bymodulating gibberellin responses in rice.Plant CellPhysiol,2006,47(2):181–191.
    [49]Zhu YY,Nomura T,Xu YH,Zhang YY,Peng Y,Mao BZ,Hanada A,Zhou HC,Wang RX,Li PJ,Zhu XD,ManderLN,Kamiya Y,Yamaguchi S,He ZH.ELONGATEDUPPERMOST INTERNODE encodes a cytochrome P450monooxygenase that epoxidizes gibberellins in a noveldeactivation reaction in rice.Plant Cell,2006,18(2):442–456.
    [50]Oikawa T,Kyozuka J.Two-step regulation of LAXPANICLE1 protein accumulation in axillary meristemformation in rice.Plant Cell,2009,21(4):1095–1108.
    [51]Yi XH,Zhang ZJ,Zeng SY,Tian CY,Peng JC,Li M,Lu Y,Meng QC,Gu MH,Yan CJ.Introgression of qPE9-1 allele,conferring the panicle erectness,leads to the decrease ofgrain yield per plant in japonica rice(Oryza sativa L.).JGenet Genomics,2011,38(5):217–223.
    [52]Huang XZ,Qian Q,Liu ZB,Sun HY,He SY,Luo D,XiaGM,Chu CC,Li JY,Fu XD.Natural variation at the DEP1locus enhances grain yield in rice.Nat Genet,2009,41(4):494–497.
    [53]Jiao YQ,Wang YH,Xue DW,Wang J,Yan MX,Liu GF,Dong GJ,Zeng DL,Lu ZF,Zhu XD,Qian Q,Li JY.Regulation of OsSPL14 by OsmiR156 defines ideal plantarchitecture in rice.Nat Genet,2010,42(6):541–544.
    [54]Miura K,Ikeda M,Matsubara A,Song XJ,Ito M,Asano K,Matsuoka M,Kitano H,Ashikari M.OsSPL14 promotespanicle branching and higher grain productivity in rice.Nat Genet,2010,42(6):545–549.
    [55]Jones MK,Liu XY.Archaeology.Origins of agriculture inEast Asia.Science,2009,324(5928):730–731.
    [56]郑云飞,蒋乐平.上山遗址出土的古稻遗存及其意义.考古,2007,(9):19–25.
    [57]Roberts JA,Elliott KA,Gonzalez-Carranza ZH.Absci-ssion,dehiscence,and other cell separation processes.Annu Rev Plant Biol,2002,53:131–158.
    [58]Patterson SE.Cutting loose.Abscission and dehiscence inArabidopsis.Plant Physiol,2001,126(2):494–500.
    [59]罗汝叶,巩鹏涛.植物落粒性状研究进展.豆科基因组学与遗传学,2010,2:1–13.
    [60]Onishi K,Takagi K,Kontani M,Tanaka T,Sano Y.Different patterns of genealogical relationships found inthe two major QTLs causing reduction of seed shatteringduring rice domestication.Genome,2007,50(8):757–766.
    [61]Marzougui S,Sugimoto K,Yamanouchi U,Shimono M,Hoshino T,Hori K,Kobayashi M,Ishiyama K,Yano M.Mapping and characterization of seed dormancy QTLsusing chromosome segment substitution lines in rice.Theor Appl Genet,2011,124(5):893–902.
    [62]Gu XY,Kianian SF,Foley ME.Multiple loci and epistasescontrol genetic variation for seed dormancy in weedy rice(Oryza sativa).Genetics,2004,166(3):1503–1516.
    [63]Cohn MA,Butera DL,Hughes JA.Seed dormancy in redrice:III.Response to nitrite,nitrate,and ammonium ions.Plant Physiol,1983,73(2):381–384.
    [64]Gianinetti A,Vernieri P.On the role of abscisic acid inseed dormancy of red rice.J Exp Bot,2007,58(12):3449–3462.
    [65]Fang J,Chai CL,Qian Q,Li CL,Tang JY,Sun L,HuangZJ,Guo XL,Sun CH,Liu M,Zhang Y,Lu QT,Wang YQ,Lu CM,Han B,Chen F,Cheng ZK,Chu CC.Mutations ofgenes in synthesis of the carotenoid precursors of ABAlead to pre-harvest sprouting and photo-oxidation in rice.Plant J,2008,54(2):177–189.
    [66]Yang XC,Hwa CM.Genetic modification of plant archi-tecture and variety improvement in rice.Heredity(Edinb),2008,101(5):396–404.
    [67]Wang YH,Li JY.The plant architecture of rice(Oryzasativa).Plant Mol Biol,2005,59(1):75–84.
    [68]Bolle C.The role of GRAS proteins in plant signal transduc-tion and development.Planta,2004,218(5):683–692.
    [69]余传元,刘裕强,江玲,王春明,翟虎渠,万建民.水稻分蘖角度的QTL定位和主效基因的遗传分析.遗传学报,2005,32(9):948–954.
    [70]Liu GF,Zhu HT,Zhang GQ,Li LH,Ye GY.Dynamicanalysis of QTLs on tiller number in rice(Oryza sativa L.)with single segment substitution lines.Theor Appl Genet,2012,125(1):143–153.
    [71]Yan JQ,Zhu J,He CX,Benmoussa M,Wu P.Moleculardissection of developmental behavior of plant height inrice(Oryza sativa L.).Genetics,1998,150(3):1257–1265.
    [72]钱前,何平,滕胜,曾大力,朱立煌.水稻分蘖角度的QTLs分析.遗传学报,2001,28(1):29–32.
    [73]Sasaki A,Ashikari M,Ueguchi-Tanaka M,Itoh H,Nishimura A,Swapan D,Ishiyama K,Saito T,KobayashiM,Khush GS,Kitano H,Matsuoka M.Green revolution:amutant gibberellin-synthesis gene in rice.Nature,2002,416(6882):701–702.
    [74]Zhang YY,Zhu YY,Peng Y,Yan DW,Li Q,Wang JJ,Wang LY,He ZH.Gibberellin homeostasis and plantheight control by EUI and a role for gibberellin in rootgravity responses in rice.Cell Res,2008,18(3):412–421.
    [75]Yang YH,Zhang FM,Ge S.Evolutionary rate patterns ofthe Gibberellin pathway genes.BMC Evol Biol,2009,9:206.
    [76]Jennings PR.The evolution of plant type in Oryza sativa.Economic Bot,1966,20(4):396–402.
    [77]Paterson AH,Li ZK.Paleo-Green Revolution for rice.Proc Natl Acad Sci USA,2011,108(27):10931–10932.
    [78]Asano K,Yamasaki M,Takuno S,Miura K,Katagiri S,ItoT,Doi K,Wu JZ,Ebana K,Matsumoto T,Innan H,KitanoH,Ashikari M,Matsuoka M.Artificial selection for agreen revolution gene during japonica rice domestication.Proc Natl Acad Sci USA,2011,108(27):11034–11039.
    [79]Komatsu M,Maekawa M,Shimamoto K,Kyozuka J.TheLAX1 and FRIZZY PANICLE 2 genes determine the inflor-escence architecture of rice by controlling rachis-branchand spikelet development.Dev Biol,2001,231(2):364–373.
    [80]Komatsu K,Maekawa M,Ujiie S,Satake Y,Furutani I,Okamoto H,Shimamoto K,Kyozuka J.LAX and SPA:major regulators of shoot branching in rice.Proc NatlAcad Sci USA,2003,100(20):11765–11770.
    [81]Mach J.Rice axillary meristem formation requires direc-tional movement of LAX PANICLE1 protein.Plant Cell,2009,21(4):1027.
    [82]Huang J,Sun SJ,Xu DQ,Yang X,Bao YM,Wang ZF,Tang HJ,Zhang HS.Increased tolerance of rice to cold,drought and oxidative stresses mediated by the overexpre-ssion of a gene that encodes the zinc finger protein ZFP245.Biochem Biophys Res Commun,2009,389(3):556–561.
    [83]Zhao KY,Wright M,Kimball J,Eizenga G,McClung A,Kovach M,Tyagi W,Ali ML,Tung CW,Reynolds A,Bustamante CD,McCouch SR.Genomic diversity andintrogression in O.sativa reveal the impact of domes-tication and breeding on the rice genome.PLoS One,2010,5(5):e10780.
    [84]Xia HB,Wang W,Xia H,Zhao W,Lu BR.Conspecificcrop-weed introgression influences evolution of weedyrice(Oryza sativa f.spontanea)across a geographicalrange.PLoS One,2011,6(1):e16189.
    [85]Yu J,Hu SN,Wang J,Wong GKS,Li SG,Liu B,Deng YJ,Dai L,Zhou Y,Zhang XQ,Cao ML,Liu J,Sun JD,TangJB,Chen YJ,Huang XB,Lin W,Ye C,Tong W,Cong LJ,Geng JN,Han YJ,Li L,Li W,Hu GQ,Huang XG,Li WJ,Li J,Liu ZW,Li L,Liu JP,Qi QH,Liu JS,Li L,Li T,Wang XG,Lu H,Wu TT,Zhu M,Ni PX,Han H,Dong W,Ren XY,Feng XL,Cui P,Li XR,Wang H,Xu X,Zhai WX,Xu Z,Zhang JS,He SJ,Zhang JG,Xu JC,Zhang KL,Zheng XW,Dong JH,Zeng WY,Tao L,Ye J,Tan J,RenXD,Chen XW,He J,Liu DF,Tian W,Tian CG,Xia HG,Bao QY,Li G,Gao H,Cao T,Wang J,Zhao WM,Li P,Chen W,Zhang XD,Zhang Y,Hu JF,Wang J,Liu S,YangJ,Zhang GY,Xiong YQ,Li ZJ,Mao L,Zhou CS,Zhu Z,Chen RS,Hao BL,Zheng WM,Chen SY,Guo W,Li GJ,Liu SQ,Tao M,Wang J,Zhu LH,Yuan LP,Yang HM.Adraft sequence of the rice genome(Oryza sativa L.ssp.indica).Science,2002,296(5565):79–92.
    [86]Huang XH,Zhao Y,Wei XH,Li CY,Wang AH,Zhao Q,LiWJ,Guo YL,Deng LW,Zhu CR,Fan DL,Lu YQ,WengQJ,Liu KY,Zhou TY,Jing YF,Si LZ,Dong GJ,Huang T,Lu TT,Feng Q,Qian Q,Li JY,Han B.Genome-wideassociation study of flowering time and grain yield traitsin a worldwide collection of rice germplasm.Nat Genet,2012,44(1):32–39.
    [87]Lu TT,Huang XH,Zhu CR,Huang T,Zhao Q,Xie KB,Xiong LZ,Zhang QF,Han B.RICD:a rice indica cDNAdatabase resource for rice functional genomics.BMCPlant Biol,2008,8:118.
    [88]Yazaki J,Kojima K,Suzuki K,Kishimoto N,Kikuchi S.The Rice PIPELINE:a unification tool for plant functionalgenomics.Nucleic Acids Res,2004,32(Database issue):D383–D387.
    [89]Droc G,Périn C,Fromentin S,Larmande P.OryGenesDB2008 update:database interoperability for functionalgenomics of rice.Nucleic Acids Res,2009,37(Databaseissue):D992–D995.
    [90]van Enckevort LJ,Droc G,Piffanelli P,Greco R,GagneurC,Weber C,González VM,Cabot P,Fornara F,Berri S,Miro B,Lan P,Rafel M,Capell T,Puigdomènech P,Ouwerkerk PB,Meijer AH,Pe E,Colombo L,Christou P,Guiderdoni E,Pereira A.EU-OSTID:a collection oftransposon insertional mutants for functional genomics inrice.Plant Mol Biol,2005,59(1):99–110.
    [91]Nagamura Y,Antonio BA,Sato Y,Miyao A,Namiki N,Yonemaru JI,Minami H,Kamatsuki K,Shimura K,Shimizu Y,Hirochika H.Rice TOGO Browser:A platformto retrieve integrated information on rice functional andapplied genomics.Plant Cell Physiol,2011,52(2):230–237.
    [92]Ware DH,Jaiswal P,Ni J,Yap IV,Pan X,Clark KY,Teytelman L,Schmidt SC,Zhao W,Chang K,CartinhourS,Stein LD,McCouch SR.Gramene,a tool for grassgenomics.Plant Physiol,2002,130(4):1606–1613.
    [93]Zhang QF.Strategies for developing green super rice.ProcNatl Acad Sci USA,2007,104(42):16402–16409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700