富血小板血浆复合骨骼肌干细胞可促进骨修复
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bone repair using skeletal muscle stem cells combined with platelet-rich plasma
  • 作者:殷诺 ; 薛锋 ; 肖海军 ; 丁亮 ; 袁君杰 ; 潘明芒 ; 喻都 ; 鞠金勇 ; 朱龙章
  • 英文作者:Yin Nuo;Xue Feng;Xiao Haijun;Ding Liang;Yuan Junjie;Pan Mingmang;Yu Du;Ju Jinyong;Zhu Longzhang;Shanghai Fengxian District Central Hospital (South Campus, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University);
  • 关键词:富血小板血浆 ; 骨骼肌干细胞 ; 肱骨近端骨缺损 ; 诱导成骨 ; 骨修复 ; 骨折愈合 ; 成骨速度
  • 英文关键词:platelet-rich plasma;;skeletal muscle stem cells;;proximal humeral defect;;osteogenic induction;;bone repair;;fracture healing;;bone formation rate
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:上海市奉贤区中心医院(上海交通大学附属第六人民医院南院);
  • 出版日期:2019-03-25
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.874
  • 基金:上海市医学重点专科建设项目(ZK2015B06),项目负责人:薛锋;; 上海市奉贤区科委项目(奉卫科2010-01),项目负责人:殷诺;; 上海市健康医学院种子基金项目(HMSF-17-21-025),项目负责人:殷诺~~
  • 语种:中文;
  • 页:XDKF201917011
  • 页数:6
  • CN:17
  • ISSN:21-1581/R
  • 分类号:60-65
摘要
背景:富血小板血浆含有的血小板颗粒富含多种活性因子,将其作为促进干细胞分化的细胞因子进行组织工程骨修复具有一定的优势。目的:探讨富血小板血浆复合骨骼肌干细胞促进兔肱骨近端骨缺损修复的效果。方法:制备兔富血小板血浆,提取兔比目鱼肌组织中的骨骼肌干细胞。将28只新西兰白兔随机分为4组,自然愈合组、骨骼肌干细胞组,富血小板血浆组、复合材料组,每组7只,均制备肱骨近端骨缺损模型,后3组造模后骨缺损处分别植入同种异体骨骼肌干细胞、自体富血小板血浆、富血小板血浆复合骨骼肌干细胞。术后进行CT检查及组织学观察骨愈合情况。结果与结论:①术后4周起复合材料组影像学上成骨速率明显高于其他3组(P <0.05);骨骼肌干细胞组、富血小板血浆组成骨速率无明显差异(P> 0.05),均明显高于自然愈合组(P <0.05);②复合材料组骨缺损处组织学评分最高,骨骼肌干细胞组和富血小板血浆组组织学评分无明显差异,自然愈合组组织学评分最低;③结果表明,富血小板血浆和骨骼肌干细胞都具有促进骨修复的作用,而二者结合能更好地修复骨缺损。
        BACKGROUND: Platelet-rich plasma contains a variety of active factors, which has certain advantages as a cytokine that promotes stem cell differentiation for bone tissue engineering.OBJECTIVE: To investigate the effect of skeletal muscle stem cells combined with platelet-rich plasma to promote the repair of rabbit bone.METHODS:(1) Rabbit platelet-rich plasma was prepared and skeletal muscle stem cells from rabbit soleus muscle were isolated.Twenty-eight New Zealand white rabbits were randomly divided into four groups(n=7/group), in which the proximal humeral bone defect model was prepared in each rabbit, followed by implantation of nothing(natural healing group), allogeneic skeletal muscle stem cells,autologous platelet-rich plasma or platelet-rich plasma combined with skeletal muscle stem cells, respectively. CT and histological examinations were performed to detect bone healing postoperatively.RESULTS AND CONCLUSION: In the postoperative 4-week CT film, new bone formation was faster in the combination group than the other three groups(P < 0.05). No significant difference in the bone formation rate was observed in the skeletal muscle stem cell and platelet-rich plasma groups(P > 0.05), but the bone formation rate in these two groups was significantly better than that in the natural healing group(P <0.05).(2) Histological score of the one defect specimens was highest in the combination group and lowest in the natural healing group, and there was no significant difference between the skeletal muscle stem cell and platelet-rich plasma groups. These results reveal that both platelet-rich plasma and skeletal muscle stem cells could promote bone repair, and their combination could achieve better outcomes in bone repair.
引文
[1]Luo CQ,Fang Y,Tu CQ,et al.Current treatment situation and progress on bone defect of collapsed tibial plateau fractures.Zhongguo Gu Shang.2016;29(2):187-191.
    [2]Tall M.Treatment of aseptic tibial shaft non-union without bone defect.Orthop Traumatol Surg Res.2018;104(1S):S63-S69.
    [3]Brinker MR,O'Connor DP.Management of Aseptic Tibial and Femoral Diaphyseal Nonunions Without Bony Defects.Orthop Clin North Am.2016;47(1):67-75.
    [4]Tang D,Tare RS,Yang LY,et al.Biofabrication of bone tissue:approaches,challenges and translation for bone regeneration.Biomaterials.2016;83:363-382.
    [5]Black CR,Goriainov V,Gibbs D,et al.Bone Tissue Engineering.Curr Mol Biol Rep.2015;1(3):132-140.
    [6]单连成,王刚,张长青,等.富血小板血浆对体外培养骨骼肌干细胞增殖及成骨活性的作用[J].中国组织工程研究与临床康复,2009,13(20):3833-3837.
    [7]Qu Z,Balkir L,van Deutekom JC,et al.Development of approaches to improve cell survival in myoblast transfer therapy.J Cell Biol.1998;142(5):1257-1267.
    [8]单连成,王刚,张长青,等.不同浓度PRP对骨骼肌干细胞成骨分化的影响[J],中国修复重建外科杂志,2009,23(8):991-996.
    [9]Lane JM,Sandhu HS.Current approaches to experimental bone grafting.Orthop Clin North Am.1987;18(2):213-225.
    [10]Pobloth AM,Schell H,Petersen A,et al.Tubular open-porousβ-tricalcium phosphate polycaprolactone scaffolds as guiding structure for segmental bone defect regeneration in a novel sheep model.J Tissue Eng Regen Med.2018;12(4):897-911.
    [11]Decambron A,Manassero M,Bensidhoum M,et al.Acomparative study of tissue-engineered constructs from Acropora and Porites coral in a large animal bone defect model.Bone Joint Res.2017;6(4):208-215.
    [12]Parizi AM,Oryan A,Shafiei-Sarvestani Z,et al.Effectiveness of synthetic hydroxyapatite versus Persian Gulf coral in an animal model of long bone defect reconstruction.J Orthop Traumatol.2013;14(4):259-268.
    [13]Martinez SA,Probst CW,Hauptman JG,et al.Effects of a fixed compression load on the osteogenic effect of autogenous cancellous bone grafts in dogs.Am J Vet Res.1992;53(12):2381-2385.
    [14]Turner TM,Urban RM,Hall DJ,et al.Restoration of large bone defects using a hard-setting,injectable putty containing demineralized bone particles compared to cancellous autograft bone.Orthopedics.2003;26(5 Suppl):s561-565.
    [15]Nuss KM,Auer JA,Boos A,et al.An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones.BMC Musculoskelet Disord.2006;7:67.
    [16]Pobloth AM,Johnson KA,Schell H,et al.Establishment of a preclinical ovine screening model for the investigation of bone tissue engineering strategies in cancellous and cortical bone defects.BMC Musculoskelet Disord.2016;17:111.
    [17]Prat S,Gallardo-Villares S,Vives M,et al.Clinical translation of a mesenchymal stromal cell-based therapy developed in a large animal model and two case studies of the treatment of atrophic pseudoarthrosis.J Tissue Eng Regen Med.2018;12(1):e532-e540.
    [18]Qian W,Gong L,Cui X,et al.Nanotopographic Regulation of Human Mesenchymal Stem Cell Osteogenesis.ACS Appl Mater Interfaces.2017;9(48):41794-41806.
    [19]Fan X,Li L,Ye Z,et al.Regulation of osteogenesis of human amniotic mesenchymal stem cells by sodium butyrate.Cell Biol Int.2018;42(4):457-469.
    [20]Bilem I,Plawinski L,Chevallier P,et al.The spatial patterning of RGD and BMP-2 mimetic peptides at the subcellular scale modulates human mesenchymal stem cells osteogenesis.JBiomed Mater Res A.2018;106(4):959-970.
    [21]Heo JS,Lee SG,Kim HO.Distal-less homeobox 5 is a master regulator of the osteogenesis of human mesenchymal stem cells.Int J Mol Med.2017;40(5):1486-1494.
    [22]Tohidnezhad M,Varoga D,Wruck CJ,et al.Platelets display potent antimicrobial activity and release human beta-defensin2.Platelets.2012;23(3):217-223.
    [23]Khojasteh A,Behnia H,Dashti SG,et al.Current trends in mesenchymal stem cell application in bone augmentation:a review of the literature.J Oral Maxillofac Surg.2012;70(4):972-982.
    [24]Li S,Huang KJ,Wu JC,et al.Peripheral blood-derived mesenchymal stem cells:candidate cells responsible for healing critical-sized calvarial bone defects.Stem Cells Transl Med.2015;4(4):359-368.
    [25]New SE,Alvarez-Gonzalez C,Vagaska B,et al.A matter of identity-Phenotype and differentiation potential of human somatic stem cells.Stem Cell Res.2015;15(1):1-13.
    [26]Morcos MW,Al-Jallad H,Hamdy R.Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration.Biomed Res Int.2015;2015:842975.
    [27]Arrighi N,Moratal C,Clément N,et al.Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle.Cell Death Dis.2015;6:e1733.
    [28]Liu R,Birke O,Morse A,et al.Myogenic progenitors contribute to open but not closed fracture repair.BMCMusculoskelet Disord.2011;12:288.
    [29]Cairns DM,Liu R,Sen M,et al.Interplay of Nkx3.2,Sox9 and Pax3 regulates chondrogenic differentiation of muscle progenitor cells.PLoS One.2012;7(7):e39642.
    [30]Mifune Y,Matsumoto T,Takayama K,et al.The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair.Osteoarthritis Cartilage.2013;21(1):175-185.
    [31]Samuel S,Ahmad RE,Ramasamy TS,et al.Platelet rich concentrate enhances mesenchymal stem cells capacity to repair focal cartilage injury in rabbits.Injury.2018;49(4):775-783.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700