退化高寒草地土壤真菌群落与土壤环境因子间相互关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between soil fungal community and soil environmental factors in degraded alpine grassland
  • 作者:李海云 ; 姚拓 ; 高亚敏 ; 张建贵 ; 马亚春 ; 路晓雯 ; 杨晓蕾 ; 张慧荣 ; 夏东慧
  • 英文作者:Haiyun Li;Tuo Yao;Yamin Gao;Jiangui Zhang;Yachun Ma;Xiaowen Lu;Xiaolei Yang;Huirong Zhang;Donghui Xia;Key Laboratory of Grassland Ecosystem,Ministry of Education,College of Pratacultural Science,Gansu Agricultural University;
  • 关键词:祁连山 ; 退化草地 ; 高通量测序 ; 真菌群落结构 ; 土壤环境因子
  • 英文关键词:Qilian Mountains;;degraded grassland;;high throughput sequencing;;fungal community structure;;soil environmental factors
  • 中文刊名:WSXB
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:甘肃农业大学草业学院草业生态系统教育部重点实验室;
  • 出版日期:2018-09-20 14:10
  • 出版单位:微生物学报
  • 年:2019
  • 期:v.59;No.348
  • 基金:国家自然科学基金(31660688)~~
  • 语种:中文;
  • 页:WSXB201904009
  • 页数:11
  • CN:04
  • ISSN:11-1995/Q
  • 分类号:94-104
摘要
【目的】为探究祁连山高寒草地退化过程中土壤真菌群落分布特征与土壤环境因子间的相互关系。【方法】利用Illumina Miseq PE250高通量测序技术对轻度、中度和重度退化草地土壤真菌群落结构变化及其多样性进行分析,并对土壤真菌群落与土壤环境因子的相互关系进行冗余分析(RDA)。【结果】随着退化程度加剧,土壤pH呈现出升高趋势,电导率呈现出先升高后降低趋势,土壤含水量、有机碳、全氮、全磷和全钾含量均逐渐降低。高通量测序共得到750575条有效序列和5788个OTUs;各试验点样地中真菌群落Chao1指数和Shannon-Wiener指数变化各异。在门分类水平上,子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、接合菌门(Zygomycota)、球囊菌门(Glomeromycota)和壶菌门(Chytridiomycota)是各草地土壤的优势类群。RDA分析表明,土壤速效钾、全氮、速效氮和有机碳是祁连山不同退化高寒草地土壤真菌群落分布的主要驱动因子。【结论】祁连山不同退化高寒草地土壤真菌群落间差异明显,土壤环境因子是影响土壤真菌群落分布的重要因素。
        [Objective] To explore the relationship between soil fungal community structure and soil environmental factors of the degradation process of alpine grassland in Qilian Mountains. [Methods] We analysed the changes and diversity of fungal community structure in lightly, moderately and severely degraded grassland by Illumina Miseq PE250 high throughput sequencing technology, and redundancy analysis(RDA) of the relationship between soil fungal community structure and soil environmental factors was analysed. [Results] With the aggravated degree of deterioration, soil pH was increased, electrical conductivity was increased first and then decreased, soil water content, organic carbon, total nitrogen, total phosphorus and total potassium were gradually decreased. We obtained a total of 750575 effective sequences and 5788 OTUs by high throughput sequencing, the Chao1 and Shannon-Wiener index of fungal communities varied in different samples. The fungal communities' dominant phyla of all soil samples were Ascomycota, Basidiomycota, Zygomycota, Glomeromycota and Chytridiomycota. RDA analysis showed that soil available potassium, total nitrogen, available nitrogen and organic carbon were the important driving factors for the distribution of soil fungal community structure in different degraded alpine grassland of Qilian Mountains. [Conclusion] The soil fungal community structure was significantly different in different degraded alpine grassland, and soil environmental factors was a important factor influenced the distribution of soil fungal community structure in Qilian Mountains.
引文
[1]Merbold L,Eugster W,Stieger J,Zahniser M,Nelson D,Buchmann N.Greenhouse gas budget(CO2,CH4 and N2O)of intensively managed grassland following restoration.Global Change Biology,2014,20(6):1913-1928.
    [2]Gould IJ,Quinton JN,Weigelt A,de Deyn GB,Bardgett RD.Plant diversity and root traits benefit physical properties key to soil function in grasslands.Ecology Letters,2016,19(9):1140-1149.
    [3]Legay N,Baxendale C,Grigulis K,Krainer U,Kastl E,Schloter M,Bardgett RD,Arnoldi C,Bahn M,Dumont M,Poly F,Pommier T,Clément JC,Lavorel S.Contribution of above-and below-ground plant traits to the structure and function of grassland soil microbial communities.Annals of Botany,2014,114(5):1011-1021.
    [4]Pathak K,Nath AJ,Sileshi GW,Lal R,Das AK.Annual burning enhances biomass production and nutrient cycling in degraded Imperata grasslands.Land Degradation&Development,2017,28(5):1763-1771.
    [5]de Figueiredo EB,Panosso AR,de Oliveira Bordonal R,de Bortoli Teixeira D,Berchielli TT,La Scala N Jr.Soil CO2-C emissions and correlations with soil properties in degraded and managed pastures in Southern Brazil.Land Degradation&Development,2017,28(4):1263-1273.
    [6]Pan WJ,Song ZL,Liu HY,Müeller K,Yang XM,Zhang XD,Li ZM,Liu X,Qiu S,Hao Q,Wang HL.Impact of grassland degradation on soil phytolith carbon sequestration in Inner Mongolian steppe of China.Geoderma,2017,308:86-92.
    [7]Chabrerie O,Laval K,Puget R,Desaire S,Alard D.Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France.Applied Soil Ecology,2003,24(1):43-56.
    [8]Zak DR,Holmes WE,White DC,Peacock AD,Tilman D.Plant diversity,soil microbial communities,and ecosystem function:are there any links?Ecology,2003,84(8):2042-2050.
    [9]Hu H,Borjigin S,Cheng YX,Nomura N,Nakajima T,Nakamura T,Uchiyama H.Effect of abandonment on diversity and abundance of free-living nitrogen-fixing bacteria and total bacteria in the cropland soils of Hulun Buir,Inner Mongolia.PLoS ONE,2014,9(9):e106714.
    [10]Chen ML,Zeng QC,Huang YM,Ni YX.Effects of the farmland-to-forest/grassland conversion program on the soil bacterial community in the Loess Hilly region.Environmental Science,2018,39(4):1824-1832.(in Chinese)陈孟立,曾全超,黄懿梅,倪银霞.黄土丘陵区退耕还林还草对土壤细菌群落结构的影响.环境科学,2018,39(4):1824-1832.
    [11]Gao XF,Han GD,Zhang GG.Soil microbial community structure and composition of Stipa Breviflora on the desert steppe.Acta Ecologica Sinica,2017,37(15):5129-5136.(in Chinese)高雪峰,韩国栋,张国刚.短花针茅荒漠草原土壤微生物群落组成及结构.生态学报,2017,37(15):5129-5136.
    [12]Wang QT,Gao MY,Liu ML,Wang HT,Dong YF,Wang YP.Illumina Miseq sequencing-based fungal community of rhizosphere soils along root orders of poplar plantation.Chinese Journal of Applied Ecology,2017,28(4):1177-1183.(in Chinese)汪其同,高明宇,刘梦玲,王华田,董玉峰,王延平.基于高通量测序的杨树人工林根际土壤真菌群落结构.应用生态学报,2017,28(4):1177-1183.
    [13]Li ZZ,Zhu LB,Lin YC,Hu YG,Zeng ZH.Seasonal variation of soil bacterial community under different degrees of degradation of Hulunbuir grassland.Acta Ecologica Sinica,2010,30(11):2883-2889.(in Chinese)李梓正,朱立博,林叶春,胡跃高,曾昭海.呼伦贝尔草原不同退化梯度土壤细菌多样性季节变化.生态学报,2010,30(11):2883-2889.
    [14]Wu YS,Ma WL,Li H,Lu P,Lv GH.Characteristics of bacterial community structure in degraded desert steppe of Inner Mongolia.Acta Ecologica Sinica,2010,30(23):6355-6362.(in Chinese)吴永胜,马万里,李浩,卢萍,吕桂芬.内蒙古退化荒漠草原土壤细菌群落结构特征.生态学报,2010,30(23):6355-6362.
    [15]Yang XZ,Wang CT,Zi HB,Liu M.Soil microbial community structure characteristics in artificial grassland with different cultivation years in the headwater region of Three Rivers,China.Chinese Journal of Applied and Environmental Biology,2015,21(2):341-349.(in Chinese)杨希智,王长庭,字洪标,刘敏.三江源区不同建植年限人工草地土壤微生物群落结构特征.应用与环境生物学报,2015,21(2):341-349.
    [16]Xia WW,Jia ZJ.Comparative analysis of soil microbial communities by pyrosequencing and DGGE.Acta Microbiologica Sinica,2014,54(12):1489-1499.(in Chinese)夏围围,贾仲君.高通量测序和DGGE分析土壤微生物群落的技术评价.微生物学报,2014,54(12):1489-1499.
    [17]Zhang JT.Applied ecology.Beijing:Science Press,2003.(in Chinese)张金屯.应用生态学.北京:科学出版社,2003.
    [18]Bao SD.Soil and agricultural chemistry analysis.3rd ed.Beijing:China Agriculture Press,2000.(in Chinese)鲍士旦.土壤农化分析.第3版.北京:中国农业出版社,2000.
    [19]Miao L,Wang SY,Li BK,Cao TH,Zhang FZ,Wang Z,Peng YZ.Effect of carbon source type on intracellular stored polymers during endogenous denitritation(ED)treating landfill leachate.Water Research,2016,100:405-412.
    [20]Reiss KC,Brown MT,Lane CR.Characteristic community structure of Florida’s subtropical wetlands:the Florida wetland condition index for depressional marshes,depressional forested,and flowing water forested wetlands.Wetlands Ecology and Management,2010,18(5):543-556.
    [21]Broeckling CD,Broz AK,Bergelson J,Manter DK,Vivanco JM.Root exudates regulate soil fungal community composition and diversity.Applied and Environmental Microbiology,2008,74(3):738-744.
    [22]Badri DV,Vivanco JM.Regulation and function of root exudates.Plant Cell&Environment,2009,32(6):666-681.
    [23]Parniske M.Arbuscular mycorrhiza:the mother of plant root endosymbioses.Nature Reviews Microbiology,2008,6(10):763-775.
    [24]Lienhard P,Terrat S,Prévost-BouréNC,Nowak V,Régnier T,Sayphoummie S,Panyasiri K,Tivet F,Mathieu O,Levêque J,Maron PA,Ranjard L.Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland.Agronomy for Sustainable Development,2014,34(2):525-533.
    [25]de Araujo ASF,Bezerra WM,dos Santos VM,Nunes LAPL,de Lyra MDCCP,do Vale Barreto Figueiredo M,Melo VMM.Fungal diversity in soils across a gradient of preserved Brazilian Cerrado.Journal of Microbiology,2017,55(4):273-279.
    [26]van der Wal A,van Veen JA,Smant W,Boschker HTS,Bloem J,Kardol P,van der Putten WH,de Boer W.Fungal biomass development in a chronosequence of land abandonment.Soil Biology and Biochemistry,2006,38(1):51-60.
    [27]Zhu LY,Pan JJ,Zhang W.Study on soil organic carbon pools and turnover characteristics along an elevation gradient in Qilian Mountain.Environmental Science,2013,34(2):668-675.(in Chinese)朱凌宇,潘剑君,张威.祁连山不同海拔土壤有机碳库及分解特征研究.环境科学,2013,34(2):668-675.
    [28]Wang RY,Liu SS,Wang CZ,Guo YX,Yan XB.Analysis on soil physicochemical indices at different altitudes in alpine rangeland.Acta Agrestia Sinica,2009,17(5):621-628.(in Chinese)王瑞永,刘莎莎,王成章,郭玉霞,严学兵.不同海拔高度高寒草地土壤理化指标分析.草地学报,2009,17(5):621-628.
    [29]Su SM,Ren LX,Huo ZH,Yang XM,Huang QW,Xu YC,Zhou J,Shen QR.Effects of intercropping watermelon with rain fed rice on fusarium wilt and the microflora in the rhizosphere soil.Scientia Agricultura Sinica,2008,41(3):704-712.(in Chinese)苏世鸣,任丽轩,霍振华,杨兴明,黄启为,徐阳春,周俊,沈其荣.西瓜与旱作水稻间作改善西瓜连作障碍及对土壤微生物区系的影响.中国农业科学,2008,41(3):704-712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700