优先级区分服务的机载网络媒质接入控制协议
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-channel media access control protocol with differential services in airborne network
  • 作者:刘炜伦 ; 张衡阳 ; 郑博 ; 高维廷
  • 英文作者:LIU Wei-lun;ZHANG Heng-yang;ZHENG Bo;GAO Wei-ting;Information and Navigation College, Air Force Engineering University;
  • 关键词:机载网络 ; 忙闲程度 ; 多信道 ; 接入门限 ; 退避 ; 区分服务
  • 英文关键词:airborne network;;busy-idle degree;;multi-channel;;access threshold;;backoff;;differential service
  • 中文刊名:ZDZC
  • 英文刊名:Journal of Zhejiang University(Engineering Science)
  • 机构:空军工程大学信息与导航学院;
  • 出版日期:2018-11-28 09:53
  • 出版单位:浙江大学学报(工学版)
  • 年:2019
  • 期:v.53;No.345
  • 基金:国家自然科学基金资助项目(61701521);; 博士后科学基金资助项目(2016M603044);; 航空科学基金资助项目(20150896010,20161996010)
  • 语种:中文;
  • 页:ZDZC201901011
  • 页数:8
  • CN:01
  • ISSN:33-1245/T
  • 分类号:104-111
摘要
为了保障机载网络的系统容量及最高优先级业务严格的时效性与可靠性需求,提出区分优先级的媒质接入控制协议.该协议对高、低优先级业务,分别采用多信道随机接入和多信道忙闲接入2种不同的信道接入策略,结合竞争窗口随信道忙闲程度自适应调整的退避机制,实现了多优先级区分服务.通过建立多信道忙闲碰撞模型和退避模型,根据高优先级业务的QoS需求,计算求解不同信道数量下低优先级业务的最优负载取值区间和接入门限以及各项系统性能的数学表达式.仿真结果表明,该协议不仅具有较高的系统容量(>10 Mb/s),而且能够保证高优先级业务严格的时效性(<2 ms)、可靠性(>99%)需求,与带差分服务的跳频MAC (PFH-MAC)协议和区分优先级的自适应抖动MAC (PAJ-MAC)协议相比,性能有较大的提升.
        A differential priority based multi-channel media access control protocol was proposed in order to guarantee the system capacity and strict demands of timeliness and reliability on the high priority traffic in airborne networks. Two different channel access strategies were used which are multi-channel random access and multichannel busy-idle access for high and low priority traffic respectively. A backoff mechanism based on the channel loads was adopted to dynamically adjust the connection window according to the busy degree of channels. Then differential service can be effectively provided. The optimal channel load interval and the access threshold of the low priority traffic in different number of channels as well as all system performance expressions were derived by establishing the multi-channel busy-idle collision model, backoff model and combining with the QoS demand of high priority traffic. The simulation results show that the protocol can ensure the strict timeliness(<2 ms), reliability(>99%) of high priority traffic and system capacity(>10 Mbit/s). The performance was improved much by comparing with priority frequency hopping(PFH-MAC) and prioritized adaptive jitter based media access control(PAJ-MAC) protocols.
引文
[1]WAN Y, NAMUDURI K, ZHOU Y, et al. A smoothturn mobility model for airborne networks[J]. IEEE Transactions on Vehicular Technology, 2013, 62(7):3359-3370.
    [2]XIE J F,WAN Y,KIM J H, et al. A survey and analysis of mobility models for airborne networks[J]. IEEE Communications Surveys and Tutorials, 2014, 16(3):1221-1238.
    [3]CHRISTMANN A,LEVETT D. Design considerations for next generation traction drive IGBT based power modules[C]//Transportation Electrification Conference and Expo(ITEC). Dearborn:IEEE, 2016:1-5.
    [4]KWAH K J,SAGDUYU Y,YACKOSKI J,et al.Airborne network evaluation:challenges and high fidelity emulation solution[J]. IEEE Communications Magazine, 2014, 52(10):30-36.
    [5]CAO S, LEE V. A novel adaptive TDMA-based MAC protocol for VANETs[J]. IEEE Communications Letters, 2018, 22(3):614-617.
    [6]SU Y. A TDMA MAC scheduling protocol algorithm for wireless mobile Ad Hoc network and its performance analyses performance analyses[C]//5th International Conference on Computer Science and Network Technology(ICCSNT). Changchun:IEEE, 2016:471-475.
    [7]ZHANG X M. New method for analyzing nonsaturated IEEE 802.11 DCF networks[J]. IEEE Wireless Communications Letters, 2013,2(2):243-246.
    [8]WAN Y,NAMUDURI K, ZHOU Y,et al. Fair andefficient full Duplex MAC protocol based on the IEEE 802.11 DCF[C]//27th Annual International Symposium on Personal,Indoor, and Mobile Radio Communications(PIMRC). Valencia:IEEE,2016:1-6.
    [9]CHOI J. NOMA-based random access with multichannel ALOHA[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12):2736-2743.
    [10]HUANG K S, HWANG C K, LEE B K,et al. An exact closed-form formula of collision probability in diverse multiple access communication systems with frame slotted aloha protocol[J]. Journal of the Franklin Institute, 2017, 354(13):5739-5752.
    [11]HERDER J C, STEVENS J A. Method and architecture for TTNT symbol rate scaling modes:US, US 7839900 B1[P].2010-11-23.
    [12]赵玮,郑博,张衡阳,等.基于RS-Polar编码的机载战术网络MAC协议[J].计算机工程,2017, 43(12):83-87.ZHAO Wei, ZHENG Bo, ZHANG Heng-yang, et al.MAC protocol based on RS-Polar coding for airborne tactical network[J]. Computer Engineering,2017, 43(12):83-87.
    [13]高晓琳,韩丰,晏坚,等.一种支持QoS的航空自组织网络无反馈MAC协议建模[J].北京航空航天大学学报,2016, 42(6):1169-1175.GAO Xiao-lin,HAN Feng, YAN Jian,et al. Model providing QoS guarantee for feedback-free MAC in aeronautical AdHoc networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(6):1169-1175.
    [14]王叶群,杨峰,黄国策,等.一种航空自组网中带差分服务的跳频MAC协议建模[J].软件学报,2013, 24(9):2214-2225.WANG Ye-qun, YANG Feng, HUANG Guo-ce, et al.Media access control protocol with differential service in aeronautical frequency-hopping Ad Hoc networks[J]. Journal of Software, 2013, 24(9):2214-2225.
    [15]肖雷蕾,张衡阳,毛玉泉,等.一种区分优先级自适应抖动的媒质接入控制协议[J].西安交通大学学报,2015,49(10):123-129.XIAO Lei-lei, ZHANG Heng-yang, MAO Yu-quan,et al. An adaptive jitter based media access control protocol with priorities[J]. Journal of Xi'an Jiao Tong University, 2015, 49(10):123-129.
    [16]ZHANG B, HU Z, XING K. Performance of RSTurbo concatenated code in AOS[C]//11th International Conference on Electronic Measurement and Instruments. Harbin:IEEE, 2013:983-987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700