超声波雾化处理模拟烟气中的SO_2研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultrasonic atomization simulated processing of SO_2 in the flue gas
  • 作者:贾丽娟 ; 李紫珍 ; 张曼 ; 覃岭 ; 王访 ; 刘天成 ; 高冀芸 ; 宁平
  • 英文作者:JIA Li-juan;LI Zi-zhen;ZHANG Man;QIN Ling;WANG Fang;LIU Tian-cheng;GAO Ji-yun;NING Ping;Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions,Key Laboratory of Resource Clean Conversion in Ethnic Regions,Education Department of Yunnan,School of Chemistry and Environment,Yunnan Minzu University;College of Environmental Science and Engineering,Kunming University of Science and Technology;
  • 关键词:环境工程学 ; 超声波雾化 ; 催化氧化 ; 二氧化硫
  • 英文关键词:environment engineering;;ultrasonic atomization;;catalytic oxidation;;sulfur dioxide
  • 中文刊名:AQHJ
  • 英文刊名:Journal of Safety and Environment
  • 机构:云南民族大学化学与环境学院云南省高校民族地区资源清洁转化重点实验室民族地区矿产资源综合利用重点实验室;昆明理工大学环境科学与工程学院;
  • 出版日期:2018-08-25
  • 出版单位:安全与环境学报
  • 年:2018
  • 期:v.18;No.106
  • 基金:国家自然科学基金项目(51568067);; 云南省应用基础研究项目(2016FB100);; 云南民族大学研究生创新基金项目(2018YJCXS236)
  • 语种:中文;
  • 页:AQHJ201804043
  • 页数:6
  • CN:04
  • ISSN:11-4537/X
  • 分类号:253-258
摘要
采用超声波雾化技术雾化Mn~(2+)吸收液,并利用雾滴中的Mn~(2+)催化氧化SO_2,达到净化低浓度SO_2的目的。通过试验考察自然光照、雾化参数及工艺条件对超声雾化脱硫率的影响。结果表明,在有Mn~(2+)催化剂的条件下,自然光照对SO_2在雾中的氧化贡献较小。在雾化液pH值4~6、气体流量0.3 L/min、雾化液体积120 m L、雾化功率40 W、Mn~(2+)浓度0.01 mol/L、温度35℃、SO_2质量浓度1 500 mg/m3、氧体积分数15%的最佳反应条件下,脱硫率100%可维持510 min,脱硫率维持在80%以上的时间为880 min。
        This paper is aimed to study on how to atomize the Mn~(2+)absorptive solution into fine droplets by using the ultrasonic atomization technology. To achieve the purpose,it would be necessary to increase the specific surface area of the absorbent and improve the gas-liquid contact effect so as to achieve the purpose of purifying the low content concentration of SO_2 with the catalytic oxidation-ultrasonic atomization and synchronous absorption methods. Therefore,we have made experiments and investigations of the influence of the natural light,the atomization parameters and the processing conditions on the ultrasonic atomization and desulfurization. The results of our research show that,under the condition of Mn~(2+)catalyst,the natural light does not play a major role in the liquid-phase oxidation of SO_2. However,when the atomization power reaches 40 W with the volume of atomized liquid being120 m L,it would be possible for the atomization rate to reach its maximal limit of 5 m L/min,with the desulfurization rate increasing up to 98. 7%. On the other hand,the optimalized reaction conditions for the ultrasonic atomization of absorbing low concentrated sulfur dioxide: gas flow rate should be 0. 3 L/min,whereas the atomization volume can go up to 120 m L,with the atomization power reaching 40 W and the Mn~(2+)concentration getting up to0. 01 mol/L under 35 ℃,so as for the SO_2 mass concentration to teach 1 500 mg/m~3 under the volume fraction of 15%. Furthermore,if the desulfurization rate can be maintained at 100% for the period of 510 minutes,the desulfurization rate can be maintained at a high rate of over 80% for the period of 880 minutes.What is more,if the p H value can be kept at 4-6,the concentration of HSO_3~- in the droplet water solution can be made to the highest rate,with the desulfurization rate increasing up to above90%. Nevertheless,if the pH value is below 4,the HSO-3 concentration in the droplet water solution may gradually be getting reduced,to quickly drop to 65. 4%. Therefore,in order to ensure better desulfurization effect,the p H value of the atomizing liquid should be maintained at least to 4-6. Thus,the experiment series we have laid out prove that under ultrasonic atomization,it would be possible to accelerate the catalytic oxidation rate of SO_2,and,consequently,the reaction effect of the liquid-state catalytic oxidation of SO_2 can be made effectively strengthened or enhanced.
引文
[1]YU Zhixia(鱼智霞),CAO Guoliang(曹国良),AN Wenhui(安文辉),et al.Total SO2and NOxemission scenarios forecast for China region 2020 and 2030[J].Journal of Environmental Engineering(环境工程学报),2017,11(4):2355-2362.
    [2]SUN Lina(孙丽娜),LI Kai(李凯),TANG Lihong(汤立红),et al.Research progress of common metal oxide flue gas desulfurization[J].Chemical Progress(化工进展),2017,36(1):181-188.
    [3]LIANG Dongdong(梁东东),LI Dajiang(李大江),GUO Chihao(郭持皓),et al.Development status and trend of flue gas desulfurization technology in China[J].Nonferrous Metals:Extractive Metallurgy(有色金属:冶炼部分),2015(4):69-73.
    [4]WANG Fan(王凡),WANG Hongmei(王红梅),ZHANG Fan(张凡),et al.Principle and application of semi-wet flue gas desulphurization technology[J].Journal of Safety and Environment(安全与环境学报),2004,4(1):26-28,55.
    [5]HU Xiaoyue(胡晓玥),LI Duosong(李多松),TIAN Lijiang(田立江).Effect of oxidation on the desulfurizing efficiency of SO2-3from the magnesium desulfurizing slurry[J].Journal of Safety and Environment(安全与环境学报),2014,14(1):168-171.
    [6]ZHAO Guangling(赵光玲),HAO Wenge(郝文阁),ZHU Na(朱娜),et al.Study on dynamic dissolution model of limestone in limestone wet desulphurization[J].Journal of Safety and Environment(安全与环境学报),2008,8(1):59-61.
    [7]JIANG Xiuping(姜秀平),LIU Youzhi(刘有智).Research progress of wet flue gas desulfurization technology[J].Applied Chemicals(应用化工),2013,42(3):535-538.
    [8]LIANG Yu(梁宇).Limestone-gypsum wet flue gas desulfurization technology analysis[J].Xinjiang Electric Power Technology(新疆电力技术),2009(4):54-55.
    [9]XU Daping(许大平).Application of soda-calcium double-alkali method in desulfurization of medium and small coal-fired boilers[J].Environmental Protection and Circular Economy(环境保护与循环经济),2012,32(4):58-60.
    [10]WU Chunjin(武春锦),LWuhua(吕武华),MEI Yi(梅毅),et al.Wet flue gas desulfurization technology and operational economic analysis[J].Chemical Progress(化工进展),2015,34(12):4368-4374.
    [11]SONG Hua(宋华),WANG Xueqin(王雪芹),ZHAO Xianjun(赵贤俊),et al.Research status and development of wet flue gas desulfurization technology[J].Chemical Industry and Engineering(化学工业与工程),2009,26(5):455-459.
    [12]NING Ping(宁平),YI Honghong(易红宏),TANG Xiaolong(唐晓龙).Industrial waste gas liquid catalytic oxidation purification technology(工业废气液相催化氧化净化技术)[M].Beijing:China Environmental Science Press,2012.
    [13]HUSS A,LIM P K,ECKERT C A.Oxidation of aqueous dioxide.II.High-pressure studies and proposed reaction mechanisms[J].Journal of Physical Chemistry,1982,86(21):4229-4233.
    [14]JOHNSTONE H F.Metallic ions as catalysts for the removal of sulfur dioxide from boiler furnace gases[J].Industry and Engineering Chemistry,1931,23(5):559-561.
    [15]LIU Huihui(刘卉卉).Study on liquid phase catalytic oxidation purification of low concentration SO2phosphate rock slurry(低浓度SO2磷矿浆液相催化氧化净化研究)[D].Kunming:Kunming University of Science and Technology,2005.
    [16]ZHAO Q Q,JIN J,GAO X Y,et al.Experimental study of the action of iron and manganese ions in a wet-method flue gas desulfurization device on the catalytic oxidization of SO2[J].Journal of Engineering for Thermal Energy&Power,2015,30(2):248-252.
    [17]ZHAO Hongying(赵洪英),CAI Lecai(蔡乐才).Analysis of flight time of fog drops in ultrasonic atomizer[J].Journal of Sichuan University of Science and Technology:Natural Science Edition(四川理工学院学报:自然科学版),2010,23(1):88-90.
    [18]ZHANG Wenjun(张文俊),WU Mingliang(武明亮),GUO Lixiao(郭丽潇),et al.Experimental study on the relationship between ultrasonic atomization frequency and atomized particle size[J].Piezoelectrics and Acoustooptics(压电与声光),2013,35(6):886-888.
    [19]HUANG Hui(黄晖),YAO Xi(姚熹),WANG Minqiang(汪敏强),et al.Atomization performance test of ultrasonic atomization system[J].Piezoelectrics and Acoustooptics(压电与声光),2004,26(1):62-64.
    [20]MESSING G L,ZHANG S,JAYANTHI G V.Ceramic powder synthesis by spray pyrolysis[J].Journal of the American Ceramic Society,2010,76(11):2707-2726.
    [21]PATIL P S.Versatility of chemical spray pyrolysis technique[J].Materials Chemistry&Physics,1999,59(3):185-198.
    [22]MA Hanze(马汉泽).Study on atomization absorption of low concentration SO2(雾化吸收低浓度二氧化硫的研究)[M].Kunming:Kunming University of Science and Technology,2011.
    [23]ZHAO Qizheng(赵琪琤),LIU Qing’an(刘庆安),JIANG Anxi(姜安玺),et al.Ultrasonic atomizing desulfurization method(超声波雾化脱硫方法):China,CN101091868[P].2007-12-26.
    [24]HUANG Weixing(黄卫星).Ultrasonic atomization test(超声雾化试验研究)[D].Zhenjiang:Jiangsu University,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700