六重准晶涡旋光光子晶体光纤特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transmission characteristics of vortex beams in a sixfold photonic quasi-crystal fiber
  • 作者:魏薇 ; 张志明 ; 唐莉勤 ; 丁镭 ; 范万德 ; 李乙钢
  • 英文作者:Wei Wei;Zhang Zhi-Ming;Tang Li-Qin;Ding Lei;Fan Wan-De;Li Yi-Gang;School of Physics, Nankai University;
  • 关键词:光子晶体光纤 ; 涡旋光 ; 色散 ; 限制性损耗
  • 英文关键词:photonic quasi-crystal fiber;;vortex beams;;dispersion;;confinement loss
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:南开大学物理科学学院;
  • 出版日期:2019-06-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11474170);; 天津市自然科学基金(批准号:16JCYBJC16900)资助的课题~~
  • 语种:中文;
  • 页:WLXB201911021
  • 页数:7
  • CN:11
  • ISSN:11-1958/O4
  • 分类号:179-185
摘要
设计了一种新型的六重准晶涡旋光光子晶体光纤,利用矢量有限元分析方法进行了数值模拟.研究结果表明光纤中模式有效折射率差?neff> 10-4,实现了7个本征矢量模(10个相位涡旋光)的稳定传输,并以HE21为对象,对光纤模式的传输特性进行了分析研究.研究结果表明,在波段1500—1600 nm内,涡旋光模式的限制性损耗在10–8—10–7量级,模场面积保持在40μm2,非线性系数在10–3量级.通过改变光纤中心空气孔的大小,能够实现特定波段的色散平坦趋势,当中心空气孔为1.9μm时,光纤能够在1500—1800 nm波段保持色散平坦,色散系数维持在63.51—65.42 ps·nm–1·km–1之间.
        In an optical fiber communication system, vortex beams have aroused great interest in the last several decades. Vortex beams possess many intriguing properties. For example, they have the ability to carry orbital angular momentum(OAM) which is mutually orthogonal. The OAM is a fundamental physical quantity of light which can be used as information carriers for transmission channel of optical fiber. Combined with the existing multiplexing techniques such as wavelength division multiplexing technique, advanced multilevel amplitude modulation formats, etc., the vortex beams provide an alternative to the increase of the transmission capacity and spectral efficiency of the optical fiber transmission system. Recently, long-length transmission of vortexbeam in optical fiber has been realized and there have also occurred some new designs of optical fiber on vortex beams, such as air-core ring shaped fiber, graded index vortex fiber, multi-ring fiber, and supermode fiber.Photonic crystal fiber(PCF) is flexible in design. Therefore, it is easy to regulate the transmission performance of PCF by adjusting the radius and the pitch of the air holes and so on. In this paper, we propose a newly designed sixfold photonic quasi-crystal fiber(SPQCF) to transmit vortex beams stably. Transmission characteristics of this newly designed fiber are simulated and calculated by using COMSOL multiphysics software. When the wavelength of the incident light is 1550 nm, the effective index difference between the vortex modes in a group is more than 10–4 which is large enough to preclude the LP modes from being formed,and to transmit 7 vector modes(10 OAM modes). Changing the radius and pitch of the air holes, we can regulate the dispersion characteristic and confinement loss of the SPQCF flexibly. At 1550 nm, the confinement loss of the SPQCF maintains 10–8-10–7 which is low enough to confine the vortex beams in the fiber core. When the incident light wavelength of HE21 ranges from 1500 nm to 1800 nm(r0 = 1.9 μm), the dispersion coefficient of the SPQCF is between 63.51-65.42 ps·nm–1·km–1 which tends to be flat. By changing r0, the flat trend is adjusted to different wavelength range. This dispersion characteristic possesses great potential for the transmission of optical solitons. The effective mode area(HE21) is about 40 μm2 and the nonlinear coefficient(HE21) is maintained on the order of 10–3 between 1500-1600 nm. These features suppress the generation of nonlinear effect in the fiber and benefit the transmission of vortex beams. The stable transmission distance is longer than 1 km. In summary, we design a new type of PCF featuring quasi-crystal structure which has a ring shaped fiber core and supports the transmission of vortex beams stably.
引文
[1]Ramachandran S,Kristensen P 2013 Nanophotonics 2 455
    [2]Curtis J E,Grier D G 2003 Opt.Lett.28 872
    [3]Tabosa J W R,Petrov D V 1999 Phys.Rev.Lett.83 4967
    [4]Vaziri A,Pan J W,Jennewein T,Weihs G,Zeilinger A 2003Phys.Rev.Lett.91 227902
    [5]Brunet C,Rusch L A 2016 Opt.Fiber Technol.31 172
    [6]Wong K L G G,Xi X,Kang M S,Lee H W,Russell P 2012Science 337 446
    [7]Bozinovic N,Yue Y,Ren Y,Tur M,Kristensen P,Huang H,Willner A E,Ramachandran S 2013 Science 340 1545
    [8]Coullet P,Gil L,Rocca F 1989 Opt.Commun.73 403
    [9]Allen L,Beijersbergen M W,Spreeuw R,Woerdman J 1992Phys.Rev.A 45 8185
    [10]McGloin D,Simpson N B,Padgett M J 1998 Appl.Opt.37469
    [11]Ramachandran S,Kristensen P,Yan M F 2009 Opt.Lett.342525
    [12]Li S,Mo Q,Hu X,Du C,Wang J 2015 Opt.Lett.40 4376
    [13]Yan Y,Zhang L,Wang J,Yang J Y,Fazal I M,Ahmed N,Willner A E,Dolinar S J 2012 Opt.Lett.37 3294
    [14]Brunet C,Vaity P,Messaddeq Y,LaRochelle S,Rusch L A2014 Opt.Express 22 26117
    [15]Brunet C,Ung B,Wang L,Messaddeq Y,LaRochelle S,Rusch L A 2015 Opt.Express 23 10553
    [16]Li S,Wang J 2013 IEEE Photon.J.5 7101007
    [17]Li S,Wang J 2014 Sci.Rep.4 3853
    [18]Xia C,Bai N,Ozdur I,Zhou X,Li G 2011 Opt.Express 1916653
    [19]Li S,Wang J 2015 Opt.Express 23 18736
    [20]Ung B,Vaity P,Wang L,Messaddeq Y,Rusch L,LaRochelle S 2014 Opt.Express 22 18044
    [21]Zhang Z,Gan J,Heng X,Wu Y,Li Q,Qian Q,Chen D,Yang Z 2015 Opt.Express 23 29331
    [22]Ferrando A,Silvestre E,Andres P,Miret J J,Andrés M V2001 Opt.Express 9 687
    [23]Yue Y,Zhang L,Yan Y,Ahmed N,Yang J Y,Huang H,Ren Y,Dolinar S,Tur M,Willner A E 2012 Opt.Lett.37 1889
    [24]Zhao C,Gan X,Li P,Fang L,Han L,Tu L,Zhao J 2016 J.Lightwave Technol.34 1206
    [25]Zhang H,Zhang W,Xi L,Tang X,Zhang X,Zhang X 2016IEEE Photon.Technol.Lett.28 1426
    [26]Jin C,Cheng B,Man B,Li Z,Zhang D 2000 Phys.Rev.B 6110762
    [27]Jin C,Meng X,Cheng B,Li Z,Zhang D 2001 Phys.Rev.B63 195107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700