钛合金Ti-6Al-4V高压冷却车削过程有限元分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite element analysis of turning Ti-6Al-4V under high-pressure coolant
  • 作者:刘文韬 ; 刘战强
  • 英文作者:Liu Wentao;Liu Zhanqiang;School of Mechanical Engineering,Shandong University;Key Laboratory of High Efficiency and Clean Mechanical Manufacture,Ministry of Education,Shandong University;
  • 关键词:Ti-6Al-4V ; 有限元仿真 ; 高压冷却 ; 切削加工
  • 英文关键词:Ti-6Al-4V;;finite element simulation;;high pressure coolant;;machining
  • 中文刊名:XXGY
  • 英文刊名:Modern Manufacturing Engineering
  • 机构:山东大学机械工程学院;山东大学高效洁净机械制造教育部重点实验室;
  • 出版日期:2018-10-18
  • 出版单位:现代制造工程
  • 年:2018
  • 期:No.457
  • 基金:高档数控机床与基础制造装备国家科技重大专项项目(2014ZX04012014)
  • 语种:中文;
  • 页:XXGY201810007
  • 页数:7
  • CN:10
  • ISSN:11-4659/TH
  • 分类号:50-56
摘要
随着钛合金的广泛应用,改善其切削加工性、提高加工表面完整性的试验研究也已得到广泛重视,但对该过程的仿真分析尚不成熟。通过Deform 3D仿真软件建立有限元仿真模型,模拟钛合金Ti-6Al-4V在干切削、普通冷却及高压冷却环境下的车削过程,研究切削环境对切削力、切削温度等加工过程量的影响,获取已加工工件距离加工表面不同深度的残余应力分布,分析高压冷却对钛合金Ti-6Al-4V加工表面残余应力的影响规律。通过钛合金Ti-6Al-4V车削试验测量切削力及刀具表面切削温度,并与有限元仿真模型对比,以验证其可靠性。仿真结果表明:随着切削液压强的增加,切削力增加,刀具表面切削温度降低,高压冷却可有效增强切削液的冷却作用。干切削时,已加工表面(d2=0)为残余拉应力;随着切削液压强的增加,已加工表面残余应力状态逐渐由残余拉应力向残余压应力转变,当切削液压强为200 bar时,已加工表面残余应力为残余压应力,且此时已加工表面残余压应力为最大值。随着测量深度的增加,残余应力值增大,在所有切削试验中,最大残余压应力值均在距离已加工表面相同距离。仿真结果与试验结果的对比证明了有限元仿真模型的可靠性,为钛合金Ti-6Al-4V高压冷却加工热力耦合分析和优化设计提供了理论依据。
        With the extensive application of titanium alloy,the machinability and the machined surface for Ti-6 Al-4 V has obtained widely attention,but the simulation of its machining process is not yet mature. Therefore,the cutting force,the cutting temperature,and the residual stress distribution at different depths from the machined surface were simulated by finite element method of Deform software during the turning process of titanium alloy Ti-6 Al-4 V under dry cutting,conventional coolant and high pressure coolant. Meanwhile the cutting force and the cutting temperature of the inserts were measured during the turning process for comparing with the simulation results. The simulation results showed that the high-pressure coolant can improve the cooling effect of the cutting process. With the increase of the pressure of coolant,the cutting force and the cutting temperature both increased decreased. The residual stress( d2= 0) is compressive stress under dry condition. With the coolant pressure increasing,the residual stress of the machined surface changed from the residual tensile stress to the residual compressive stress. The residual compressive stress is maximum under the coolant pressure of 200 bar. The value of residual stress increased with the measuring depth increasing. The maximum value of the residual compressive stress was observed at the same depth to the machined surface under all cutting condition. Compared with the experimental results,the reliability of the finite simulation is high,so that it is helpful to optimize the manufacturing parameters and provide the theoretical basis for the machining process of Ti-6 Al-4 V.
引文
[1]COLAK O. Optimization of machining performance in highpressure assisted turning of Ti6Al4V alloy[J]. StrojniskivestnikJournal of Mechanical Engineering,2014,60(10):675-681.
    [2] EZUGWU E O. Key improvements in the machining of difficult-to-cut aerospace superalloys[J]. International Journal of Machine Tools and Manufacture,2005(45):1353-1367.
    [3] COURBON C,KRAMAR D,KRAJNIK P,et al. Investigation of machining performance in high-pressure jet assisted turning of Inconel 718:an experimental study[J]. International Journal of Machine Tools and Manufacture,2009,49(14):1114-1125.
    [4] KLOCKE F,SETTINERI L,LUNG D,et al. High performance cutting of gamma titanium aluminides:Influence of lubricoolant strategy on tool wear and surface integrity[J].Wear,2013,302(1):1136-1144.
    [5] SIMA M,OZEL T. Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V[J]. International Journal of Machine Tools and Manufacture,2010,50(11):943-960.
    [6] BRAHAM-BOUCHNAK T,GERMAIN G,MOREL A,et al.Influence of high pressure coolant assistance on the machinability of the titanium alloy Ti555-3[J]. Machining Science and Technology,2015,19(1):134-151.
    [7]韦联,周利平.基于Deform 3D的金属车削过程仿真[J].工具技术,2010,44(8):29-33.
    [8]武文革,黄美霞.基于DEFORM-3D的高速车削加工仿真[J].现代制造工程,2009(11):91-94,24.
    [9] HU X L,AI X,WAN Y,et al. Flow stress modeling for aeronautical aluminum alloy 7050-T7451 in high-speed cutting[J]. Transactions of Nanjing University of Aeronautics&Astronautics,2007,24(2):139-144.
    [10]夏亮亮,袁军堂,汪振华,等.基于DEFORM-3D的铝合金铣削力仿真与试验研究[J].机械设计与制造,2013(4):85-87.
    [11]刘俊岩.水蒸汽作绿色冷却润滑剂的作用机理及切削试验研究[D].哈尔滨:哈尔滨工业大学,2005.
    [12] GODLEVSKI V A,VOLKOV A V,LATYSHEV V N,et al.The kinetics of lubricant penetration action during machining[J]. Lubrication Science,1997,9(2):127-140.
    [13] LI X. Study of the jet-flow rate of cooling in machining Part1. Theoretical analysis[J]. Journal of Materials Processing Technology,1996,62(1/2/3):149-156.
    [14]叶斌,陶德华.环境友好润滑剂的特点及发展[J].润滑与密封,2002(5):73-76.
    [15] KARMA A. Encyclopedia of materials science and technology[M]. London:Elsevier Oxford,2001:6873-6886.
    [16]张蓉蓉,赵先锋,李长虹,等.基于Deform-3D的车削残余应力分析[J].组合机床与自动化加工技术,2016(5):22-24,28.
    [17]杨世铭.传热学基础[M].北京:高等教育出版社,2006:202-204.
    [18] LI B. On the mechanism of chip breaking[J]. Journal of Engineering for Industry,1979(101):241.
    [19] WYATT J E,BERRY J T. A new technique for the determination of superficial residual stresses associated with machining and other manufacturing processes[J]. Journal of Materials Processing Technology,2006,171(1):132-140.
    [20] GOLDSTEIN R J,FRANCHETT M E. Heat transfer from a flat surface to an oblique impinging jet[J]. ASME,Transactions,Journal of Heat Transfer,1988(110):84-90.
    [21] KLOCKE F,DOBBELER B,LUNG D. Energy Saving Potentials of High Pressure Lubricoolant Supply[J]. Procedia CIRP,2015(26):355-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700