裂纹闭合对高压空气爆破冲击煤体瓦斯抽采效果影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of crack closure on the gas drainage efficiency during the impact coal seam with high pressure air blasting
  • 作者:李守国 ; 贾宝山 ; 聂荣山 ; 王永保
  • 英文作者:LI Shouguo;JIA Baoshan;NIE Rongshan;WANG Yongbao;College of Safety Science and Engineering,Liaoning Technical University;CCTEG Shenyang Research Institute;State Key Laboratory of Coal Mine Safety Technology;Dingji Coal Mine,Huaihu Coal-electicity Limited Company;
  • 关键词:高压空气爆破 ; 冲击煤体 ; 瓦斯抽采 ; 裂纹闭合
  • 英文关键词:high pressure air blasting;;impact coal seam;;gas drainage;;crack closure
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:辽宁工程技术大学安全科学与工程学院;煤科集团沈阳研究院有限公司;煤矿安全技术国家重点实验室;淮沪煤电有限公司丁集煤矿;
  • 出版日期:2017-08-15
  • 出版单位:煤炭学报
  • 年:2017
  • 期:v.42;No.275
  • 基金:国家“十三五”大型油气田及煤层气开发科技重大专项资助(2016ZX05045-004);; 中国煤炭科工集团有限公司科技创新基金资助项目(2014QN003)
  • 语种:中文;
  • 页:MTXB201708014
  • 页数:5
  • CN:08
  • ISSN:11-2190/TD
  • 分类号:112-116
摘要
鉴于高压空气爆破冲击煤体过程中裂纹闭合对瓦斯抽采效果的影响,基于能量和弹性理论,对裂纹闭合的长度进行分析计算,得到了闭合区域位置在距离爆破孔3.8 m。通过在丁集煤矿进行井下现场试验,结果表明:裂纹的闭合对该区域的瓦斯抽采影响表现为闭合区域瓦斯的涌出量增幅变小;在距离爆破孔1.0~4.0 m的区域内,随着距离爆破孔距离的增加观测孔瓦斯的涌出量增幅先增大后减小;在距离爆破孔1.8~2.5 m的区域内,瓦斯涌出量增幅最大;在距离爆破孔4.0 m区域,瓦斯涌出量增幅最小,接近裂纹闭合区域。理论计算和现场试验具有良好的一致性。
        The crack closure in an impact coal seam induced by the high pressure air blasting has a great effect on the gas drainage efficiency. The length of crack closure was calculated and analyzed based on the energy and elastic theories. And,it was found that the closure region is located at the distance of 3. 8 m from blasting hole. The high pressure air blasting experiment was conducted in the Dingji underground coal mine,China. The results show that the effect of crack closure on gas drainage efficiency was manifested as the amplitude of gas emission decreases at the crack closure region. In the region of 1.0-4. 0 m from blasting hole,the amplitude of gas emission in observation hole was first increased and then decreased with the increase of distance from blasting hole. In the region of 1.8-2. 5 m from blasting hole,the amplitude of gas emission was maximal. At the region of distance 4. 0 m from blasting hole, the crack was nearly closed that the gas emission in observation hole was minimal. The theoretical calculation is in a good consistency with the field test,and it can provide an important reference for the reasonable arrangement of gas drainage boreholes.
引文
[1]王庭斌.中国大中型气田分布的地质特征及主控因素[J].石油勘探与开发,2005,32(4):1-8.WANG Tingbin.Distribution of large-middlesized gas fields in China:Geological characteristic sand key controlling factors[J].Petroleum Exploration and Development,2005,32(4):1-8.
    [2]李建忠,郑民,张国生,等.中国常规与非常规天然气资源潜力及发展前景[J].石油学报,2012,33(S1):89-98.LI Jianzhong,ZHENG Min,ZHANG Guosheng,et al.Potential and prospects of conventional and unconventional natural gas resource in China[J].ActaPetrolei Sinica,2012,33(S1):89-98.
    [3]张遂安,袁玉,孟凡圆.我国煤层气开发技术进展[J].煤炭科学技术,2016,44(5):1-5.ZHANG Suian,YUAN Yu,MENG Fanyuan.Progress on coal bed menthane development technology in China[J].Coal Science and Technology,2016,44(5):1-5.
    [4]刘小磊,吴财芳,秦勇,等.我国煤层气开发技术适应性及趋势分析[J].煤炭科学技术,2016,44(10):58-64.LIU Xiaolei,WU Caifang,QIN Yong,et al.Analysis on suitability and tendency of China coalbed methane development technology[J].Coal Science and Technology,2016,44(10):1-5.
    [5]李守国.高压空气爆破煤层增透关键技术与装备研发[J].煤炭科学技术,2015,43(2):92-95.LI Shouguo.Key technology and equipment research and development of improving coal seam permeability by high pressure air blasting[J].Coal Science and Technology,2015,43(2):92-95.
    [6]李守国.高压空气爆破致裂煤体数值模拟[J].煤矿安全,2013,44(12):163-165.LI Shouguo.Numerical simulation of coal fracture caused by high-pressure air blasting[J].Safety in Coal Mines,2013,44(12):163-165.
    [7]宁建国.爆炸与冲击动力学[M].北京:国防工业出版社,2012.
    [8]杨善元.岩石爆破动力学基础[M].北京:煤炭工业出版社,1993.
    [9]杨桂通.塑性动力学[M].北京:高等教育出版社,2002.
    [10]ELBER W.The significance of fatigue crack closure.Damage Tolerance in Aircraft Structures[J].ASTM STP 486,1971:230-242
    [11]赵建平,徐国元.爆炸波特征及能量分配的实验研究[J].爆破,2009,26(1):2-5.ZHAO Jianping,XU Guoyuan.Experimental study on characteristics and energy distribution of explosion wave[J].Blasting,2009,26(1):2-5.
    [12]宗琦,杨吕俊.岩石中爆炸冲击波能量分布规律初探[J].爆破,1999,16(2):2-6.ZONG Qi,YANG Lujun.Shock energy distribution of column charge in rock[J].Blasting,1999,16(2):2-6
    [13]蔡峰,刘泽功,LUO Yi.爆轰应力波在高瓦斯煤层中的传播和衰减特性[J].煤炭学报,2014,39(1):110-114CAI Feng,LIU Zegong,LUO Yi.Propagation and attenuation characteristics of stress waves generated by explosion in high-gas coalbeds[J].Journal of China Coal Society,2014,39(1):110-114.
    [14]吴世跃,赵文.含吸附煤层气煤的有效应力分析[J].岩石力学与工程学报,2005,24(10):1674-1678.WU Shiyue,ZHAO Wen.Analysis of effective stases in adsorbed methane-coal system[J].Chinese Journal of Rock Me-chanics and Engineering,2005,24(10):1674-1678.
    [15]孟雅,李治平.覆压下煤的孔渗性实验及其应力敏感性研究[J].煤炭学报,2015,40(1):154-159.MENG Ya,LI Zhiping.Experimental study on the porosity and permeability of coal in net confining stress and its stress sensitivity[J].Journal of China Coal Society,2015,40(1):154-159.
    [16]VYACHESLAV N Romanov,LAUREN C Graeser,SINISHA A Jikich,et al.Coal-gas interaction:implications of changes in texture and porosity[J].International Journal of Coal Science&Technology,2016,3(1):10-19.
    [17]SCHUBNEL A,GUEGUEN Y.Dispersion and anisotropy of elJunhuaastic waves in cracked rocks[J].Journal of Geophysical Research,2003,108(B2):1-16.
    [18]褚怀保,杨小林,侯爱军,等.煤体中爆炸应力波传播与衰减规律模拟实验研究[J].爆炸与冲击,2012,32(2):186-188.CHU Huaibao,YANG Xiaolin,HOU Aijun.A simulation-based experimental study on explosion stress wave propagation and attenuation in coal[J].Explosion and Shock Waves,2012,32(2):186-188.
    [19]XUE Junhua,WANG Hanpeng,ZHOU Wei,et al.Experimental research on overlying strata movement and fracture evolution inpillarless stress-reliefmining[J].International Journal of Coal Science&Technology,2015,2(1):38-45.
    [20]钱七虎.岩土中的冲击爆炸效应[M].北京:国防工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700