戈壁地表土壤颗粒的空间变异特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial Heterogeneity of Topsoil Particles in Jartai Gobi,Inner Mongolia
  • 作者:高君亮 ; 高永 ; 吴波 ; 罗凤敏 ; 党晓宏 ; 蒙仲举 ; 梁爱民
  • 英文作者:GAO Junliang;GAO Yong;WU Bo;LUO Fengmin;DANG Xiaohong;MENG Zhongju;LIANG Aimin;Institute of Desertification Studies, Chinese Academy of Forestry;Experimental Center of Desert Forestry,CAF;Desert Science and Engineering College, Inner Mongolia Agricultural University;Northwest Institute of Eco-Environment and Resources, CAS;
  • 关键词:数字图像 ; 地表颗粒 ; 空间分异 ; 戈壁
  • 英文关键词:Digital image;;Surface soil particles;;Spatial heterogeneity;;Gobi
  • 中文刊名:TURA
  • 英文刊名:Soils
  • 机构:中国林业科学研究院荒漠化研究所;中国林业科学研究院沙漠林业实验中心;内蒙古农业大学沙漠治理学院;中国科学院西北生态环境资源研究院;
  • 出版日期:2019-02-15
  • 出版单位:土壤
  • 年:2019
  • 期:v.51;No.299
  • 基金:国家自然科学基金项目(51769019,41471151)资助
  • 语种:中文;
  • 页:TURA201901019
  • 页数:7
  • CN:01
  • ISSN:32-1118/P
  • 分类号:137-143
摘要
研究戈壁地表土壤颗粒粒度特征及空间变异可为戈壁地区风蚀监测、评价及制定科学的防沙治沙对策提供参考。以吉兰泰盐湖西北部的堆积型细砾质戈壁为研究对象,基于数字图像技术计算了地表不同粒级颗粒的质量分数,并分析了颗粒空间变异特征。结果表明,图像处理技术提取戈壁地表土壤颗粒的效果较好,3个粒级颗粒质量分数总和为93.12%,粒径>0.84 mm、0.84~0.42 mm和<0.42 mm颗粒质量分数分别为69.81%、14.99%和8.32%,变异系数分别为14.12%、40.02%和55.06%,变异函数模型分别为高斯模型、高斯模型和指数模型,空间异质性尺度分别为632、691和1 875 m。3个粒级颗粒均呈斑块状分布,且C/(C_0+C)介于72.79%~79.37%,说明结构因素和随机因素共同影响戈壁地表颗粒的空间分布格局,但结构性因素(戈壁形成过程、地势、风蚀及植被分布格局等)是造成颗粒分布格局差异的主要驱动力。
        The grain size characteristics and spatial distribution of topsoil particles could provide references for the monitoring and evaluation of surface wind erosion. The stacked fine gravel Gobi in the northwest of Jartai Salt Lake was selected as the research objective. Based on the digital image processing technique, the percentage contents of different size particles were obtained for the Gobi surface. The spatial heterogeneities of different size particles were analyzed through both classical statistics and geostatistics. The results showed that the digital image processing technique was an effective approach to extract the information of surface particle composition, the total percentage of three size particles of non-erodible, semi-erodible and high-erodible was 93.12%, the mean contents of them were 69.81%, 14.99% and 8.32% with the variation coefficients of 14.12%,40.02% and 55.06%, respectively. The variation functions of non-erodible and semi-erodible particle contents were classified as Gaussian model, while that of high-erodible particle content as Exponential model. The spatial heterogeneity scale of the three size particles were 632 m, 691 m and 1 875 m, respectively. All the above three indices indicated that the smaller the particle size,the larger the spatial variability. All the three size particles were distributed as patches, and the value of C/(C_0+C) varied from72.79% to 79.37%, indicated that the spatial pattern of surface particles of Gobi was the combined effect of structural factors and random factors, but the structural factors, such as the forming process of Gobi, terrain, the distribution of wind erosion and vegetation, were the dominant driving forces of the spatial distribution of surface particles.
引文
[1]冯益明,吴波,周娜,等.基于遥感影像识别的戈壁分类体系研究[J].中国沙漠,2013,33(3):635-641
    [2]尤全刚,薛娴,王涛,等.戈壁地区风沙活动对公路影响的初步研究[J].中国沙漠,2011,31(1):9-15
    [3]邹学勇,董光荣,王周龙.戈壁风沙流若干特征研究[J].中国沙漠,1995,15(4):368-373
    [4]薛娴,张伟民,王涛.戈壁砾石防护效应的风洞实验与野外观测结果--以敦煌莫高窟顶戈壁的风蚀防护为例[J].地理学报,2000,55(3):375-383
    [5]董治宝,屈建军,刘小平,等.戈壁表面阻力系数的实验研究[J].中国科学D辑(地球科学),2001,31(11):954-958
    [6]董治宝,陈广庭.内蒙古后山地区土壤风蚀问题初论[J].土壤侵蚀与水土保持学报,1997,3(2):84-90
    [7]Chepil W S.Dynamics of wind erosion:Initiation of soil movement by wind I.Soil structure[J].Soil Science,1952,75:473-483
    [8]Chepil W S.Factors that influence clod structure and erodiability of soil by wind[J].Water-Stable Structure Soil Science,1953,76:389-399
    [9]董治宝,李振山.风成沙粒度特征对其风蚀可蚀性的影响[J].土壤侵蚀与水土保持学报,1998,4(4):1-6
    [10]王利兵,胡小龙,余伟莅,等.沙粒粒径组成的空间异质性及其与灌丛大小和土壤风蚀相关性分析[J].干旱区地理,2006,29(5):688-693
    [11]高君亮,高永,罗凤敏,等.表土粒度特征对风蚀荒漠化的响应[J].科技导报,2014,32(25):20-25
    [12]丁延龙,高永,蒙仲举,等.希拉穆仁荒漠草原风蚀地表颗粒粒度特征[J].土壤,2016,48(4):803-812
    [13]吴正.风沙地貌学[M].北京:科学出版社,1987
    [14]T·雅库布夫.土壤风蚀及其防治[M].北京:中国农业出版社,1955:15-26
    [15]王鹿振,虞毅,高永,等.用于沙粒粒级信息提取的数值影像采集条件研究[J].内蒙古农业大学学报(自然科学版),2009,30(4):92-98
    [16]高君亮,高永,虞毅,等.基于数字图像处理技术的风蚀地表颗粒提取[J].水土保持通报,2011,31(6):139-142
    [17]高君亮.风蚀地表土壤颗粒的图像表征及空间变异特征研究[D].呼和浩特:内蒙古农业大学,2011
    [18]王淮亮,李玉宝,高君亮,等.风蚀地表颗粒含量提取技术--基于决策树图像分类[J].农机化研究,2013,35(2):134-137
    [19]王淮亮,高君亮,原伟杰,等.戈壁灌丛堆周边地表土壤颗粒的空间异质特征[J].植物生态学报,2013,37(5):464-473
    [20]钱广强,董治宝,罗万银,等.基于数字图像的中国西北地区戈壁表面砾石形貌特征研究[J].中国沙漠,2014,34(3):625-633
    [21]吉兰泰盐化集团公司志编纂领导小组.吉兰泰盐化集团公司志[M].呼和浩特:内蒙古人民出版社,2003
    [22]朱元骏,邵明安.黄土高原水蚀风蚀交错带小流域坡面表土砾石空间分布[J].中国科学D辑(地球科学),2008,38(3):375-383
    [23]张季如,朱瑞赓,祝文化.用粒径的数量分布表征的土壤分形特征[J].水利学报,2004(4):67-71,79
    [24]刘付程,史学正,潘贤章,等.苏南典型地区土壤颗粒的空间变异特征[J].土壤通报,2003,34(4):246-249
    [25]陈伏生,曾德慧,陈广生,等.不同土地利用方式下沙地土壤水分空间变异规律[J].生态学杂志,2003,22(6):43-48
    [26]贾晓红,李新荣,周海燕,等.黄灌沙区农田耕层土壤性状空间异质性分析[J].水土保持学报,2005,19(5):101-104
    [27]樊立娟,胡广录,廖亚鑫,等.河西走廊斑块植被区表层土壤粒径及其分形维数的空间变异特征[J].干旱区研究,2015,32(6):1068-1075
    [28]刘耘华.新疆三种荒漠植被“肥岛”的土壤颗粒空间异质性研究[D].乌鲁木齐:新疆农业大学,2009
    [29]刘金伟,李志忠,武胜利,等.新疆艾比湖周边白刺沙堆形态特征空间异质性研究[J].中国沙漠,2009,29(4):628-635
    [30]王冬冬,高磊,陈效民,等.红壤丘陵区坡地土壤颗粒组成的空间分布特征研究[J].土壤,2016,48(2):361-367
    [31]郑敬刚,张本昀,何明珠,等.灌丛化对贺兰山西坡草场土壤异质性的影响[J].干旱区研究,2009,26(1):26-31
    [32]张强,程滨,杨治平,等.芦芽山鬼箭锦鸡儿灌丛营养特征及土壤养分分布规律[J].应用生态学报,2006,17(12):2291-2297
    [33]许文强,罗格平,陈曦.干旱区绿洲-荒漠过渡带灌丛土壤属性研究[J].应用生态学报,2006,17(4):583-586
    [34]邱开阳,谢应忠,许冬梅,等.毛乌素沙地南缘沙漠化临界区域土壤养分的空间异质性[J].生态学报,2010,30(22):6052-6062

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700