基于表皮损伤的黄瓜采摘臂结构参数优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization Design of Structural Parameters of Cucumber Harvesting Manipulator Based on the Issue of Epidermal Injury
  • 作者:高国华 ; 郑玉航 ; 马帅
  • 英文作者:Gao Guohua;Zheng Yuhang;Ma Shuai;College of Mechanical Engineering and Applied Electronics Technology,Beijing University of Technology;
  • 关键词:黄瓜采摘 ; 机械臂 ; 机构分析 ; 运动分析
  • 英文关键词:cucumber harvesting;;manipulator;;mechanism analysis;;motion analysis
  • 中文刊名:NJYJ
  • 英文刊名:Journal of Agricultural Mechanization Research
  • 机构:北京工业大学机械工程与应用电子技术学院;
  • 出版日期:2019-03-11
  • 出版单位:农机化研究
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金项目(51675011)
  • 语种:中文;
  • 页:NJYJ201911003
  • 页数:9
  • CN:11
  • ISSN:23-1233/S
  • 分类号:14-22
摘要
为提高黄瓜机械化采摘的可行性,针对采摘机械臂这一关键部分展开研究,并制作了黄瓜采摘机械臂样机。针对在实验中出现的表皮损伤采摘失败现象,设计实验对黄瓜的物理和力学性能参数进行了测量,包括黄瓜的密度、平均长度、弹性模量及泊松比及恢复系数。在此基础上,对采摘机械臂进行机构运动分析和研究,并通过建立黄瓜与机构作用过程的受力过程及理论模型,分析了黄瓜运动碰撞过程中关键物理参数的变化情况,得到了黄瓜机械臂采摘中造成黄瓜表皮损伤的关键参数因素。通过理论分析与样机试验相结合的方式,对这些参数进行优化改进,分析得到当滑道接触点之上部分的黄瓜长度a为0. 293m、切断时黄瓜与水平方向夹角α为0. 638 1 rad,即采摘切刀段到滚轮垂直距离h为0. 174 5 m、采摘臂伸出端长度d为0. 235 3 m时,黄瓜与滑道碰撞时的碰撞力小于11. 3N,黄瓜表皮不会被损伤,表明优化结果具有很好的准确性和有效性。研究结果可以为黄瓜采摘领域中设备的研制与开发提供重要参考。
        The harvesting manipulator,as the key part of cucumber harvesting robot,was studied and the corresponding prototype of cucumber harvesting manipulator was manufactured so as to improve the feasibility of mechanized harvesting for cucumber. Aiming at the issue of epidermal injury of cucumber in the harvesting process,the mechanical and physical parameters were measured by experiments,on the basis of which the motion of mechanism of harvesting manipulator were studied and analyzed. The fundamental physical quantities were analyzed in the collision process by establishing the force and theoretical relationship model between the harvesting manipulator and cucumber in operation process,thus the key factors that put an influence on epidermal injury were obtained. When the cucumber length above contact point of the slide is 0. 293 m,the angle between the cucumber and the horizontal direction is 0. 638 1 rad,that is,the vertical distance h between the cutter and roller is 0. 174 5 m,the extension length d of the manipulator is 0. 235 3 m,so that the collision force between the cucumber and slide is less than 11. 3 N,and cucumber epidermis will not be damaged. The research result shall provide reference for the research and development of cucumber harvesting equipment.
引文
[1] Catherine J MorrisonPaul,Donald S Siegel. Seale Economiesand Industry Agglomeration Externalities:A Dynamic CostFunction Approach[J]. American Eeonomic Review,1999,89(1):272-289.
    [2]万正林,罗庆熙.我国蔬菜产后现状与发展策略[J].农业工程技术:温室园艺,2006(7):32-33.
    [3]肖体琼,何春霞,陈巧敏,等.基于机械化生产视角的中国蔬菜成本收益分析[J].农业机械学报,2015,46(5):75-82.
    [4]肖体琼,陈永生,何春霞,等.蔬菜机械化水平评价研究与实证分析[J].中国蔬菜,2016(1):67-70.
    [5]徐少山,沈建春.夏秋黄瓜品种比较试验[J].上海蔬菜,2005(6):23-24.
    [6]孙玉河,李文琴,马德华.我国黄瓜生产的现状、问题和发展趋势[J].天津农业科学,2003,9(3):54-56.
    [7]梁喜凤,苗香雯,崔绍荣,等.番茄收获机械手运动学优化与仿真试验[J].农业机械学报,2005,36(7):93-100.
    [8]张洁,李艳文.果蔬采摘机器人的研究现状、问题及对策[J].机械设计,2010,27(6):1-5.
    [9] Qiao Jun Sasao,Akira Shibusawa. Mapping yield and qualityusing the mobile fruit grading robot[J]. Biosystems Engi-neering,2005,90(2):135-142.
    [10] Kondo N,Ting KC. Robotics for plant production[J]. Arti-ficial intelligence review,1998,12(1-3):227-243.
    [11] Kondo N,Monta M,Fujiura T. Fruit harvesting robots inJapan[J]. Adv. Space Res,1996,18(1):181-184.
    [12]周增产,J Bontsema,L Van Kollenburg-Crisan.荷兰黄瓜收获机器人的研究开发[J].农业工程学报,2001,17(6):77-80.
    [13] Van Henten E J,Van Tuijl B J A,Hemminget J,et al.An autonomous robot for harvesting cucumbers in greenhou-ses[J]. Autonomous robots,2002,13(3):241-258.
    [14] Van Henten E J,Hemming J,Van Tuijl B J A,et al. Col-lision-free motion planning for a cucumber picking robot[J]. Biosystems Engineering,2003,86(2):135-144.
    [15] Van Henten E J,Van Tuijl B J A,Hemming J,et al. Fieldtest of an autonomous cucumber picking robot[J]. Biosys-tems Engineering,2003,86(3):305-313.
    [16] Shigehiko Hayashi. Evaluation of a strawberry-harvestingrobot in a field test[J]. Biosystems engineering,2010,105:160-171.
    [17]陈飞,蔡健荣.柑橘收获机器人技术研究进展[J].农机化研究,2008(7):232-235.
    [18] Mehta S S,MacKunis W,Burks T F. Robust visual servocontrol in the presence of fruit motion for robotic citrus har-vesting[J]. Computers and electronics in agriculture,2016,123:362-375.
    [19]杨文亮.苹果采摘机器人机械手结构设计与分析[D].镇江:江苏大学,2009.
    [20]冯青春.黄瓜采摘机械臂结构优化与运动分析[J].农业机械学报,2010,41(S1):244-248.
    [21]纪超.温室黄瓜采摘机器人系统研制及性能分析[J].机器人,2011,33(6):723-730.
    [22] Zhao De-An,Lv Jidong,Ji Wei,et al. Design and con-trol of an apple harvesting robot[J]. Biosystems engineer-ing,2011,110:112-122.
    [23]李芝梅,陈莹梅.物体密度测量实验方法的改进[J].韶关学院学报,2010,31(6):54-57.
    [24]单明彻,徐朗.苹果的机械特性和机械损伤[J].农业机械学报,1988(2):72-79.
    [25]姚天曙.鲜黄瓜抗挤压性能与预紧包装方法[J].包装与食品机械,2011,29(2):14-17.
    [26]王泽南,单明彻.水果机械特性及损伤的研究[J].粮油加工与食品机械,1986(3):19-25.
    [27]候天兴,杨兴国,黄成,等.基于冲量定理的滚石对构筑物冲击力计算方法[J].岩石力学与工程学报,2015,34(S1):3113-3122.
    [28]王鹰.连续输送机械设计手册[K].北京:中国铁道出版社,2001.
    [29]钱少明,杨庆华,王志恒,等.黄瓜抓持特性与末端采摘执行器研究[J].农业工程学报,2010,26(7):107-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700