养护制度对粉煤灰基地质聚合物强度影响的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Curing Schedules on the Strength of Fly Ash-Based Geopolymer
  • 作者:丁二宝 ; 曹春娥 ; 胡海泉 ; 陈云霞 ; 卢希龙
  • 英文作者:DING Er-bao;CAO Chun-e;HU Hai-quan;CHEN Yun-xia;LU Xi-long;School of Materials Science and Engineering,Jingdezhen Ceramic Institute;Pingdingshan University;
  • 关键词:养护制度 ; 抗折强度 ; 缩聚产物 ; 显微结构
  • 英文关键词:curing schedule;;bending strength;;condensation product;;microstructure
  • 中文刊名:GSYT
  • 英文刊名:Bulletin of the Chinese Ceramic Society
  • 机构:景德镇陶瓷大学材料科学与工程学院;平顶山学院;
  • 出版日期:2019-04-15
  • 出版单位:硅酸盐通报
  • 年:2019
  • 期:v.38;No.271
  • 基金:国家自然科学基金(51162016);; 江西省科技支撑计划项目(20133BBE50004);; 景德镇市科技计划项目(2017GYZD016-03);; 江西省主要学科学术与技术带头人计划项目(20182BCB22012)
  • 语种:中文;
  • 页:GSYT201904031
  • 页数:7
  • CN:04
  • ISSN:11-5440/TQ
  • 分类号:192-197+204
摘要
以景德镇地区的粉煤灰与炉渣为基础原料,通过添加一定的激发剂压制成型,制备地质聚合物材料,主要研究了养护制度对样品强度的影响,并对样品进行了XRD、SEM、EDS表征。结果表明:80℃养护0. 5 h,可迅速形成大量的钠铝硅酸盐(N-A-S-H);延长80℃的养护时间,Ca~(2+)会取代部分Na~+,形成一定量的钙铝硅酸盐(C-A-SH),抗折强度逐渐升高。继续升至120℃养护时,虽产生的缩聚物(N-A-S-H)较多,但由于水分的快速蒸发,使样品的孔隙率升高,并产生微裂纹,抗折强度下降。180℃养护1. 5 h时,由于形成了无定形的水化硅酸钙(C-S-H),其填充在因失水形成的孔隙中,使抗折强度回升;延长养护时间至3 h,C-S-H遭到破坏,缩聚产物与晶体间受热膨胀不同产生热应力,抗折强度下降。继续升至250℃养护时,随养护时间的延长,玻璃相被进一步侵蚀,缩聚产物进一步增加,桥联于玻璃珠周围,使显微结构致密,抗折强度升高,并保持在40 MPa左右。
        Fly ash-based geopolymer materials were pressed by adding certain alkaline agent using fly ash and slag in Jingdezhen area as the original materials. Influence of various curing schedules on the strength of geological polymer materials was studied,and XRD,SEM and EDS were employed to characterize the microstructure and elements of the samples. The results show that a mass of N-A-S-H are formed quickly when the samples are cured at 80 ℃ for 0. 5 h. A certain amount of C-A-S-H can be formed due to partly replace of Ca~(2+) and Na~+ with the extension of curing time at 80 ℃ and the bending strength gradually increased. Rising the curing temperature to 120 ℃,the amount of N-A-S-H increases,but the bending strength decreases because of the rapid evaporation of moisture leaving the porosity of the sample increases and generates micro-cracks. When curing the samples at 180 ℃ for 1. 5 h,the bending strength rises again due to the forming of amorphous hydrated calcium silicate (C-S-H) which fill in the pore formed by the water. Extending the curing time to 3 h,the bending strength decreases due to the thermal stress caused by different thermal expansion between the condensation product and the crystal and C-S-H is damaged. Continue to rise the curing temperature to 250 ℃,glass phase is further eroded and condensation products further increase which bridge between glass beads around making the microstructure more compactly. With the extension of curing time the flexural strength increases and the bending strength maintaines at about 40 MPa finally.
引文
[1]Davidovits J.Geopolymers:inorganic polymeric new material[J].Journal of Thermal Analysis,1991,37(8):1633-1656.
    [2]张云升.高性能地聚合物混凝土结构形成机理及其性能研究[D].南京:东南大学,2003.
    [3]Lee W K W,Van Deventer J S J.The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements[J].Cement and Concrete Research,2002,32:577-584.
    [4]Angel P.Advances in understanding alkali-activated materials[J].Cement and Concrete Research,2015,78:110-125.
    [5]Hardjito D,Wallah S E,Sumajouw D M J.On the development of fly ash-based geopolymer concrete[J].ACI Materials Journal,2004,101(6):467-472.
    [6]Swanepoel J C.Utilisation of fly ash in a geopolymeric material[J].Applied Geochemistry,2002,17:1143-1148.
    [7]Palomo A,Criado M.Microstructure development of alkali-activated fly ash cement:a descriptive model[J].Cement and Concrete Research,2005,35:1204-1209.
    [8]冯泽平.高钙粉煤灰地质聚合物的制备及耐久性研究[J].矿产保护与利用,2018,2:107-110.
    [9]Ghanbari M.Modeling and optimization of compressive strength and bulk density of metakaolin-based geopolymer using central composite design:A numerical and experimental study[J].Ceramics International,2017,43:324-335.
    [10]Gharzouni A.Alkali-activated materials from different aluminosilicate sources:Effect of aluminum and calcium availability[J].Journal of NonCrystalline Solids,2018,484:14-25.
    [11]郭晓潞.早期地聚合反应过程1H低场核磁共振[J].硅酸盐学报,2015,43(2):138-143.
    [12]李启华.免烧淤泥砖的设计制备优化及抗冻性能研究[J].硅酸盐通报,2016,35(9):3036-3041.
    [13]Trevor W.The role of activating solution concentration on alkali-silica reaction in alkali-activated fly ash concrete[J].Cement and Concrete Research,2016,83:124-130.
    [14]刘桂华,李小斌,周秋生,等.铝硅在强碱溶液中的结构[J].轻金属,1998,6:13-16.
    [15]孙家瑛.新型固化剂GSC固化软土的力学性能试验研究[J].土木建筑与环境工程,2013,35(1):20-25.
    [16]Proceedings of the Second International Symposium on Pre-failure Deformation Characteristics of Geomaterials[C].Rotterdam:Balke-ma,1999:323-330.
    [17]巩思宇.养护温度和时间对碱激发偏高岭土基地质聚合物反应过程及性能的影响[D].南宁:广西大学,2012.
    [18]崔学民.地质聚合物中类沸石结构的形成及应用[J].稀有金属材料与工程,2015,44:600-605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700