在叶蜡石孔隙中吸附与扩散的分子动力学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption and diffusion of cesium in pyrophyllite pore:a molecular dynamics study
  • 作者:陈忠村 ; 赵耀林 ; 杨琳
  • 英文作者:Zhongcun Chen;Yaolin Zhao;Lin Yang;School of Nuclear Science and Technology, Xi'an Jiaotong University;
  • 关键词:吸附 ; 扩散 ; Cs~+ ; 叶蜡石 ; 分子动力学
  • 英文关键词:adsorption;;diffusion;;Cs~+;;pyrophyllite;;molecular dynamics
  • 中文刊名:JBXK
  • 英文刊名:Scientia Sinica(Chimica)
  • 机构:西安交通大学核科学与技术学院;
  • 出版日期:2018-11-02 13:46
  • 出版单位:中国科学:化学
  • 年:2019
  • 期:v.49
  • 基金:国家自然科学基金(编号:11775168)资助项目
  • 语种:中文;
  • 页:JBXK201901007
  • 页数:6
  • CN:01
  • ISSN:11-5838/O6
  • 分类号:75-80
摘要
本文采用分子动力学方法(molecular dynamics, MD)模拟研究了Cs~+在叶蜡石纳米孔隙中的吸附和扩散行为.径向分布函数和配位数的分析表明,在叶蜡石孔隙中Cs~+的第一水合壳层半径为3.05?,水合数为8.0~8.5.原子密度分布表明Cs~+是以外层表面络合物的形式吸附在叶蜡石基面上. Cs~+的水合结构及其吸附百分比受浓度和温度的影响均较小.随着温度升高, Cs~+热运动加剧导致其扩散系数显著增大.
        In the article, molecular dynamics simulations are carried out to investigate the adsorption and diffusion behaviors of Cs~+in pyrophyllite nanopore. The results of radial distribution function and coordination number indicate that the first hydration shell radius of Cs~+and hydration number are 3.05 ? and 8.0~8.5, respectively. Atomic density profiles demonstrate that Cs~+adsorbed on the pyrophyllite basal in the form of outer-sphere surface complex. And the concentration and temperature have little impact on the hydrated structure and adsorption percent of Cs~+. Increasing temperature will promote the thermal motion of Cs~+, which leads to diffusion coefficient increased dramatically.
引文
1 Wang J,Fan XH,Xu GQ,Zheng HL.Geological Disposal of High-level Radioactive Waste in China:Progress in the Last Decade(1991-2000).Beijing:Atomic Energy Press,2004(in Chinese)[王驹,范显华,徐国庆,郑华铃.中国高放废物地质处置十年进展.北京:原子能出版社,2004]
    2 Omar H,Arida H,Daifullah A.Appl Clay Sci,2009,44:21-26
    3 Yang S,Okada N,Nagatsu M.J Hazard Mater,2016,301:8-16
    4 Cygan RT,Liang JJ,Kalinichev AG.J Phys Chem B,2004,108:1255-1266
    5 Sun L,Tanskanen JT,Hirvi JT,Kasa S,Schatz T,Pakkanen TA.Chem Phys,2015,455:23-31
    6 Zhang S,Liu Q,Gao F,Li X,Liu C,Li H,Boyd SA,Johnston CT,Teppen BJ.J Phys Chem C,2017,121:402-409
    7 Zhao Q,Burns SE.Colloids Surfs A,2017,516:354-361
    8 Zhang TN,Xu XW,Dong L,Tan ZY,Liu CL.Acta Phys-Chim Sin,2017,33:2013-2021(in Chinese)[张陶娜,徐雪雯,董亮,谭昭怡,刘春立.物理化学学报,2017,33:2013-2021]
    9 Kerisit S,Okumura M,Rosso KM,Machida M.Clay Clay Miner,2016,64:389-400
    10 Kosakowski G,Churakov SV,Thoenen T.Clay Clay Miner,2008,56:190-206
    11 Churakov SV.Environ Sci Technol,2013,47:9816-9823
    12 Lammers LN,Bourg IC,Okumura M,Kolluri K,Sposito G,Machida M.J Colloid Interface Sci,2017,490:608-620
    13 Kadoura A,Narayanan Nair AK,Sun S.J Phys Chem C,2016,120:12517-12529
    14 Pérez-Conesa S,Martínez JM,Sánchez Marcos E.J Phys Chem C,2017,121:27437-27444
    15 Lee JH,Guggenheim S.Am Mineral,1981,66:350-357
    16 Plimpton S.J Comput Phys,1995,117:1-19
    17 Berendsen HJC,Grigera JR,Straatsma TP.J Phys Chem,1987,91:6269-6271
    18 Ryckaert JP,Ciccotti G,Berendsen HJC.J Comput Phys,1977,23:327-341
    19 Dang LX.Chem Phys Lett,1994,227:211-214
    20 Greathouse JA,Cygan RT.Phys Chem Chem Phys,2005,7:3580-3586
    21 Kerisit S,Liu C.Environ Sci Technol,2009,43:777-782
    22 Robinson RA,Stokes RH.Electrolyte Solutions.London:Butterworth,1955

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700