聚变能源中的氚化学与氚工艺研究进展及展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of Tritium Chemistry and Technology in Fusion Energy
  • 作者:赵林杰 ; 肖成建 ; 龙兴贵 ; 陈志林 ; 侯京伟 ; 龚宇 ; 冉光明 ; 王和义 ; 彭述明
  • 英文作者:ZHAO Lin-jie;XIAO Cheng-jian;LONG Xing-gui;CHEN Zhi-lin;HOU Jing-wei;GONG Yu;RAN Guang-ming;WANG He-yi;PENG Shu-ming;Institute of Nuclear Physics and Chemistry,China Academy of Engineering Physics;
  • 关键词:聚变能源 ; 氚化学与氚工艺 ; 氚工厂 ; 氘氚燃料循环
  • 英文关键词:fusion energy;;tritium chemistry and technology;;tritium plant;;D-T fuel cycle
  • 中文刊名:HXFS
  • 英文刊名:Journal of Nuclear and Radiochemistry
  • 机构:中国工程物理研究院核物理与化学研究所;
  • 出版日期:2019-04-15 15:59
  • 出版单位:核化学与放射化学
  • 年:2019
  • 期:v.41;No.176
  • 基金:国家重点研发计划资助项目(2017YFE0301600)
  • 语种:中文;
  • 页:HXFS201901007
  • 页数:20
  • CN:01
  • ISSN:11-2045/TL
  • 分类号:58-77
摘要
核聚变被认为是人类社会未来的理想能源,对社会、经济的可持续发展具有重要的战略意义。氘氚聚变反应具有反应截面大、反应速率高、点火温度低及释放能量大等优点,是目前聚变研究的主要目标,而高效的氘氚燃料循环工艺与技术是实现聚变能源商业应用的基础。本文主要介绍氘氚燃料循环所涉及的等离子体排灰气中氚的快速回收、氚的增殖与提取、大规模氢同位素分离、氚测量等相关氚化学与氚工艺的研究进展及展望,以期对未来聚变能源氚工厂相关技术的研究提供借鉴和参考。
        To realize controlled fusion on the earth has been a dream of human being. Owing to extensive research and development, the fusion reaction of D and T seems to be realized. However, to realize a D-T fusion reactor as an energy source, lots of engineering issues still remain to be solved. Among all, T-relating issues are quite important, because T is radioactive and its resources are quite limited. In this paper, tritium chemistry and technology to establish the D-T reactor as an energy source are summarized.
引文
[1] Walthers C,Sedgley D,Batzer T,et al.Copuming of deuterium-helium and tritium-helium mixtures at TSTA[C].IEEE Thirteenth Symposium on Fusion Engineering,1989.
    [2] Tesch C,Carlson R,Michelotti R,et al.Tritium Systems Test Assembly (TSTA) stabilization[J].Fusion Sci Technol,2005,48(1):258-261.
    [3] Hayashi T,Okuno K.Overview of tritium safety technology at the tritium process laboratory of JAERI[J].J Fusion Energy,1993,12(1-2):21-25.
    [4] Penzhorn R D,Bekris N,Coad P,et al.Status and research progress at the Tritium Laboratory Karlsruhe[J].Fusion Eng Des,2000,49-50:753-767.
    [5] Glugla M,Antipenkov A,Beloglazov S,et al.The ITER tritium systems[J].Fusion Eng Des,2007,82(5-14):472-487.
    [6] Giegerich T,Day C.The KALPUREX-process:a new vacuum pumping process for exhaust gases in fusion power plants[J].Fusion Eng Des,2014,89:1476-1481.
    [7] Lawless R,Butler B,Hollingsworth A.Tritium plant technology development for a DEMO power plant[J].Fusion Sci Technol,2017,71:679-686.
    [8] Day C,Giegerich T.The direct internal recycling concept to simplify the fuel cycle of a fusion power plant[J].Fusion Eng Des,2013,88:616-620.
    [9] Wan Y,Li J,Liu Y.Overview of the present progress and activities on the CFETR[J].Nucl Fusion,2017,57:102009.
    [10] Fukada S,Suemori S,Onoda K.Proton transfer in SrCeO3-based oxide with internal reformation under supply of CH4 and H2O[J].J Nucl Mater,2006,348(1-2):26-32.
    [11] Glugla M,Lasser R,Le T L,et al.Experience gained during the modification of the CAPRICE system to CAPER[J].Fusion Eng Des,2000,49-50:811-816.
    [12] Glugla M,Dorr L,Lasser R,et al.Recovery of tritium from different sources by the ITER Tokamak exhaust processing system[J].Fusion Eng Des,2002,61-62:569-574.
    [13] Bornschein B,Glugla M,Günther K,et al.Tritium tests with a technical PERMCAT for final clean-up of ITER exhaust gases[J].Fusion Eng Des,2003,69(1-4):51-56.
    [14] Bornschein B,Glugla M,Günther K,et al.Successful experimental verification of the Tokamak exhaust processing concept of ITER with the CAPER facility[J].Fusion Sci Technol,2017,48(1):11-16.
    [15] Musyaev R K,Lebedev B S,Grishechkin S K,et al.Tritium superpermeability:experimental investigation and simulation of tritium recirculation in “Prometheus” setup[J].Fusion Sci Technol,2005,48:35-38.
    [16] Musyaev R K,Yukhimchuk A A,Lebedev B S,et al.Study of hydrogen isotopes superpermeation through vanadium membrane on “Prometheus” setup[J].Fusion Sci Technol,2008,54:523-525.
    [17] Albrecht H,Hutter E.Tritium recovery from an ITER ceramic test blanket module:process options and critical R&D issues[J].Fusion Eng Des,2000,49-50:769-773.
    [18] Willms R S.Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium[J].Fusion Eng Des,1995,28:386-391.
    [19] Nishikawa M,Tanaka K I,Uetake M,et al.Adsorption isotherm and separation factor for multicomponent hydrogen isotopes in cryosorption method for recovery of tritium from blanket sweep gas[J].Fusion Technol,1995,28:711-716.
    [20] Kawamura Y.Research and development of the tritium recovery system for the blanket of the fusion reactor in JAEA[J].Nucl Fusion,2009,49:055019.
    [21] Demange D,Alecu C G,Bekris N,et al.Overview of R&D at TLK for process and analytical issues on tritium management in breeder blankets of ITER and DEMO[J].Fusion Eng Des,2012,87(7-8):1206-1213.
    [22] Luo D,Song J,Huang G,et al.Progress of China’s TBM tritium technology[J].Fusion Eng Des,2012,87(7-8):1261-1267.
    [23] Bükki-Deme A.Experimental investigation of ZrCo getter beds as candidate process for the tritium extraction systems of the European test blanket modules[J].Fusion Sci technol,2017,71:527-531.
    [24] Luo D,Huang G,Huang Z,et al.Recent progress of China HCCB TBM tritium system[J].Fusion Eng Des,2016,109:416-421.
    [25] Incelli M,Santucci A,Tosti S,et al.Design of a multi-tube Pd-membrane module for tritium recovery from He in DEMO[J].Processes,2016,4(4):40.
    [26] Bekris N,Caldwell-Nichols C,Hutter E.Cold trap and cryogenic molecular sieve adsorber:components for tritium extraction from the purge gas of the HCPB-breeder blanket for ITER[J].Fusion Eng Des,2003,69:21-25.
    [27] Demange D,Antunes R,Borisevich O,et al.Tritium extraction technologies and DEMO requirements[J].Fusion Eng Des,2016,109-111:912-916.
    [28] Kawamura Y,Yamanishi T.Tritium recovery from blanket sweep gas via ceramic proton conductor membrane[J].Fusion Eng Des,2011,86:2016-2163.
    [29] Iwai Y,Yamanishi T.Influence of framework silica to alumina ratio on the tritiated water adsorption and desorption characteristics of NaX and NaY zeolite[J].J Nucl Sci Technol,2008,45:532-540.
    [30] Kawamura Y,Isobe K,Iwai Y,et al.Research and development of the tritium recovery system for the blanket of the fusion reactor in JAEA[J].Nucl Fusion,2009,49:055019.
    [31] Vasaru G.Tritium isotope separation[M].US:CRC Press,1993.
    [32] Yamamoto I,Kanagawa A.Preliminary experiments of separation of tritium isotope by distillation of water[J].J Nucl Sci Technol,1979,16(2):147-148.
    [33] Davidson R B,Hatten P V,Schaub M,et al.Commisioning and first operating experience at Darlington Tritium Removal Facility[J].Fusion Technol,1988,14:472-479.
    [34] Holtslander W,Harrison T,Goyette V,et al.Recovery and packaging of tritium from Canadian heavy water reactors[J].Fusion Sci Technol,1985,8(2P2):2473-2477.
    [35] Song K M,Sohn S H,Kang D W.Installation of liquid phase catalytic exchange columns for the Wolsong Tritium Removal Facility[J].Fusion Eng Des,2007,82:2264-2268.
    [36] Cristescu I,Bükki-Deme A,Carr R,et al.Review of the TLK activities related to water detritiation,isotope separation based on cryogenic distillation and development of barriers against tritium permeation[J].Fusion Sci Technol,2017,71(3):225-230.
    [37] Michling R,Bekris N,Cristescu I.Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe[J].Fusion Eng Des,2013,88:2361-2365.
    [38] Boniface H,Castillo I,Everatt A,et al.A light-water detritiation project at Chalk River Laboratories[J].Fusion Sci Technol,2011,60(4):1327-1330.
    [39] Bornschein B,Day C,Demange D,et al.Tritium management and safety issues in ITER and DEMO breeding blankets[J].Fusion Eng Des,2013,88:466-471.
    [40] Liger K,Lefebvre X,Ciampichetti A,et al.HCLL and HCPB coolant purification system:design of the copper oxide bed[J].Fusion Eng Des,2011,86:1859-1862.
    [41] Aiello A,Ghiders B E,Utili M,et al.Finalization of the conceptual design of the auxiliary circuits for the European test blanket systems[J].Fusion Eng Des,2015,96-97:56-63.
    [42] Bhattacharyya R,Bhanja K,Mohan S.Mathematical analysis of reduction of copper oxide pellets by hydrogen using the shrinking core model[J].Fusion Eng Des,2015,100:560-564.
    [43] 谢波,翁葵平.液态金属包层中氚提取技术的研究进展[J].中国材料科技与设备,2011,7(1):7-11.
    [44] Sherman R H,Bartlit J R,Briesmeister R A.Relative volatilities for the isotopic system deuterium-deuterium tritide-tritium[J].Cryogenics,1976,16(10):611-613.
    [45] Souers P C.Cryogenic hydrogen data pertinent to magnetic fusion energy[R].USA:California University,Lawrence Livermore Laboratories,1979.
    [46] 罗祎青,袁希钢,刘春江.饱和氢的状态方程[J].化学工程,2003,31(2):66-70.
    [47] Soave G S.An effective modification of the Benedict-Webb-Rubin equation of state[J].Fluid Phase Equilib,1999,164:157-172.
    [48] Bartlit J R.Hydrogen isotope distillation for fusion power reactors[J].Cryogenics,1979,19(5):275-279.
    [49] Iwai Y,Et Al.H-D-T cryogenic distillation experiments at TPL/JAERI in support of ITER[J].Fusion Eng Des,2002,61-62:553-560.
    [50] Bornea A,Et Al.Experimental investigation on hydrogen cryogenic distillation equipped with package made by ICIT[J].Fusion Sci Technol,2015,67(2):266-269.
    [51] Bornea A,Et Al.Investigation related to hydrogen isotopes separation by cryogenic distillation[J].Fusion Sci Technol,2008,54(2):426-429.
    [52] Alekseev I,Et Al.Experimental results of hydrogen distillation at the low power cryogenic column for the production of deuterium depleted hydrogen[J].Fusion Sci Technol,2008,54(2):407-410.
    [53] Pautrot G P.The tritium extraction facility at the institute LAUE-LANGEVAN experience of operation with tritium[J].Fusion Technol,1988,14:480-483.
    [54] Sherman R H,Bartlit J R.Operation of the TSTA isotope-separation system with 100 Gram tritium[J].Fusion Technol,1988,14:1273-1276.
    [55] Naruse Y,Okuno K,Yoshida H,et al.Developments of tritium technology for next-step fusion devices under JAERIDOE (LANL) collaboration[J].J Nucl Sci Technol,1990,27(12):1081-1095.
    [56] Yoshida H,Kveton O,Koonce J.Status of the ITER tritium plant design[J].Fusion Eng Des,1998,39-40:875-882.
    [57] Iwai Y,Yoshida H,Yamanishi T.A design study of water detritiation and hydrogen isotope separation system for ITER[J].Fusion Eng Des,2000,49-50:847-853.
    [58] Yoshida H,Glugla M,Hayashi H.Design of the ITER tritium plant,confinement and detritiation facilities[J].Fusion Eng Des,2002,61-62:513-523.
    [59] 彭述明,王和义.氚化学与工艺学[M].北京:国防工业出版社,2015.
    [60] 夏修龙.低温精馏氢同位素分离影响因素研究[J].核技术,2006,29(6):221-224.
    [61] 夏修龙,任兴碧.低温精馏分离H2/HD[J].核化学与放射化学,2008,30(2):108-111.
    [62] 夏修龙,罗阳明.低温精馏氢同位素分离全回流模式研究[J].原子能科学技术,2008,42(2):314-317.
    [63] Weichselgartner H,Frischmuth H,Perchermeier J,et al.Optimization of a large-scale gas chromatograph for separating tritium and DT from other H isotopes[J].Fusion Sci Technol,1983,4(2P2):687-692.
    [64] 蒋国强,罗德礼,陆光达.氚和氚的工程技术[M].北京:国防工业出版社,2007.
    [65] Zhou Junbo,Gao Liping,Wang Kuisheng.Hydrogen isotope separation by cryogenic gas chromato-graphy using the combined column of 5 ? molecular sieve and Al2O3[J].Int J Hydrogen Energy,2006,31(14):2131-2135.
    [66] Zhang D,Kodama A,Goto M,et al.Kinetics in hydrogen isotopes cryogenic adsorption[J].Sep Purif Technol,2004,37(1):1-8.
    [67] Cheh C H,Chew V S,Weng C,et al.Advanced gas chromatographic system testing[J].Fusion Sci Technol,1995,28(3):561-565.
    [68] 翁承文,姚琼英,候建平,等.低温热色谱分离氢同位素[J].高技术通讯,1996(4):52-56.
    [69] Heung L K,Sessions H T,Poore A S,et al.Next-generation TCAP hydrogen isotope separation process[J].Fusion Sci Technol,2008,54:399-402.
    [70] Heung L K,Staack G C,Klein J E.Tests of isotopic separation efficiency of palladium packed columns[J].Fusion Sci Technol,2008,54:391-394.
    [71] Angela A A,Eric N S,Donald G,et al.Thermal cycling absorption process(TCAP):instrument and simulation development status at Los Alamos Laboratory[J].Fusion Sci Technol,2005,48:159-162.
    [72] Xiao X,Heung L K,Sessions H T.Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process[J].Fusion Sci Technol,2015,67(3):643-646.
    [73] Strzelczyk F,Leterq D,Wilhelm A M,et al.Gas-solid chromatographic separation of hydrogen isotopes:a comparison between two palladium bearing materials-alumina and kieselguhr[J].J Chromatogr A,1998,822:326-331.
    [74] Laquerbe C,Ducret D,Ballanger A,et al.Optimization of a thermal cycling absorption process design by dynamic simulation[J].Fusion Sci Technol,2002,41(3):1121-1125.
    [75] Laquerbe C,Contreras S,Baudouin O,et al.Modelling aging effects on a thermal cycling absorption process column[J].Fusion Sci Technol,2008,54:403-406.
    [76] Golubkov A N,Vedeneev A I,Tenyaev B N.Counterflow hydrogen isotope separation facility- data on tritium activities[J].Fusion Eng Des,2000,49-50:825-829.
    [77] 王伟伟,周晓松,龙兴贵.金属氢化物法分离氢同位素研究进展[J].同位素,2011,24:15-20.
    [78] 陆光达,蒋国强,李赣.金属氢化物柱内氢同位素的快速排代[J].原子能科学技术,2003,37(2):176-180.
    [79] 黄国强,罗德礼,雷强华.热循环吸附装置的初步氢同位素分离[J].化学工程,2010,38:215-218.
    [80] Chen Z,Chang R,Mu L,et al.An open-walled ionization chamber appropriate to tritium monitoring for glovebox[J].Rev Sci Instrum,2010,81:073302.
    [81] Chen Z,Peng S,Chen H,et al.Development of a novel system for monitoring tritium in gaseous[J].Nucl Sci Tech,2015,26:020602.
    [82] Lewis R J,Telle H H,Bornschein B.Dynamic Raman spectroscopy of hydrogen isotopomer mixtures in-line at TILO[J].Laser Phys Lett,2008,7:522-531.
    [83] Sturm M,Schlosser M,Lewis R J.Monitoring of all hydrogen isotopologues at Tritium Laboratory Karlsruhe using Raman spectroscopy[J].Laser Phys,2010,20(2):493-507.
    [84] Schlosser M,Fischer S,Sturm M.Design implications for laser Raman measurement systems for tritium sample-analysis[J].Fusion Sci Technol,2011,60:976-981.
    [85] Fischer S,Sturm M,Schlosser M.Monitoring of tritium purity during long-term circulation in the KATRIN test experiment LOOPINO using laser Raman spectroscopy[J].Fusion Sci Technol,2011,60:925-930.
    [86] Sherman R H,Taylor D J,Bartlit J R.Radiochemical reaction studies of tritium mixed gases by laser Raman spectroscopy at TSTA[J].Fusion Technol,1992,21:457-461.
    [87] O′hira S,Nakamura H,Konishi S.On-line tritium process gas analysis by laser Raman spectroscopy at TSTA[J].Fusion Technol,1992,21:465-470.
    [88] Schlosser M,Rupp S,Seitz H.Accurate calibration of the laser Raman system for the Karlsruhe Tritium Neutrino Experiment[J].J Mol Struct,2013,1044:61-66.
    [89] Shu W M,Matsuyama M,Suzuki T.Monitoring of tritium in diluted gases by detecting Bremsstrahlung X-rays[J].Fusion Eng Des,2006,81:803-808.
    [90] Wang W W,Ren X B,Yu M M.Effect of MnCl2 deposition content on the textural properties of activated alumina and its elution performance for hydrogen isotopes[J].Adsorption,2017,23:13-18.
    [91] Wang W W,Ren X B,Xia L D.Study of hydrogen isotopic elution performance on activated alumina modified with metal salts[J].Adsorption:under review.
    [92] 王伟伟,任兴碧,夏立东.三氧化二铝PLOT柱气相色谱法分离氢同位素自旋异构体[J].核技术,2016,39(11):110501.
    [93] 王伟伟,陈晓华,夏立东.氘氚燃料气体氕纯化系统设计及工艺初探[J].核技术,2015,38(5):050603.
    [94] 陈平,付小龙,胡鹏,等.MnCl2改性γ-Al2O3毛细管填充柱气相色谱分析氢同位素[J].色谱,2017,35(7):766-771.
    [95] 胡鹏,陈平,曹大伟,等.金属有机框架 CPL-1 填充柱气相色谱分析氢同位素[J].色谱,2017,35(10):1023-1027.
    [96] Chen Z,Peng S,Meng D,et al.Theoretical study of energy deposition in ionization chambers for tritium measurements[J].Rev Sci Instrum,2013,84:103302.
    [97] Chen Z,Peng S,Cheng S,et al.Analysis of ion recombination in ionization chambers for tritium measurements[J].Fusion Eng Des,2015,101:52-55.
    [98] Chen Z,Peng S,He Y,et al.Theoretical study of Jesse effect in tritium measurements using ionization chambers[J].Nucl Instrum Methods Phys Res,Sect A,2016,806:267-270.
    [99] Pearson J E.Nondestructive determination of areal density and tritium content of tritided erbium films with Beta-excited X-rays[J].Appl Spectrosc,1973,27(6):450-453.
    [100] Matsuyama M,Watanabe K,Hasegawa K.Tritium assay in materials by the Bremsstrahlung counting method[J].Fusion Eng Des,1998,39(1):929-936.
    [101] An Z,Hou Q,Long J J.Reconstruction of depth distribution of tritium in materials by beta-ray induced X-ray spectrometry[J].Nucl Instrum Methods Phys Res,Sect,B,2008,266:3643-3646.
    [102] Yang Y,Peng T,Chen Z.The influence of neutron activated products in BIXS method for tungsten[J].Fusion Eng Des,2016,113:308-312.
    [103] Yang Y,Chen Z,Wang R.Effects of tritium 2-D distribution on tritium depth profile reconstruction in BIXS measurements[J].Fusion Eng Des,2018,130:142-147.
    [104] Tanabe T,Miyasaka K,Nishizwa K.Surface tritium detection by imaging plate technique[J].Fusion Eng Des,2002:528-531.
    [105] Matsuyama M,Torikai Y,Watanabe K.In-situ measurement of high level tritiated water by Bremsstrahlung counting[J].Fusion Sci Technol,2005,48(1):324-331.
    [106] Matsuyama M.Development of a new detection system for monitoring high-level tritiated water[J].Fusion Eng Des,2008,83(10-12):1438-1441.
    [107] Matsuyama M,Hara M.Standardization of tritium measuring devices based on a high-sensitivity calorimeter[J].Fusion Sci Technol,2008,54(1):182-185.
    [108] Matsuyama M,Takatsuka K,Hara M.Sensitivity of a specially designed calorimeter for absolute evaluation of tritium concentration in water[J].Fusion Eng Des,2010,85(10-12):2045-2048.
    [109] Sigg R A,McCarty J E,Livingston R R.Real-time aqueous tritium monitor using liquid scintillation counting[J].Nucl Instrum Methods Phys Res,1994,353(1-3):494-498.
    [110] Furuta E,Kato Y,Fujisawa S.Measurement of tritium with plastic scintillators in large vials of a low background liquid scintillation counter:an organic waste-less method[J].J Radioanal Nucl Chem,2017(4):1-8.
    [111] Chung H,Shim M,Yoshida H,et al.Korea’s progress on the ITER tritium systems[J].Fusion Eng Des,2009,84(2-6):599-603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700