铯原子nP_(3/2)(n=70—94)里德伯态的紫外单光子激发及量子亏损测量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Measurement of quantum defect of cesium nP_(3/2)(n=70—94) Rydberg states by using ultraviolet single-photon Rydberg excitation
  • 作者:刘硕 ; 白建东 ; 王杰英 ; 何军 ; 王军民
  • 英文作者:Liu Shuo;Bai Jian-Dong;Wang Jie-Ying;He Jun;Wang Jun-Min;State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University;Collaborative Innovation Center of Extreme Optics, the Ministry of Education and Shanxi Province,Shanxi University;
  • 关键词:铯原子里德伯态 ; 单光子激发 ; 量子亏损 ; 里德伯屏蔽效应
  • 英文关键词:cesium Rydberg atoms;;single-photon excitation;;quantum defect;;Rydberg screen effect
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:量子光学与光量子器件国家重点实验室山西大学光电研究所;山西大学教育部-山西省省部共建极端光学协同创新中心;
  • 出版日期:2019-04-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家重点研发计划课题(批准号:2017YFA0304502);; 国家自然科学基金(批准号:11774210,61875111,61475091);; 山西省1331重点学科建设工程经费资助的课题~~
  • 语种:中文;
  • 页:WLXB201907010
  • 页数:9
  • CN:07
  • ISSN:11-1958/O4
  • 分类号:123-131
摘要
基于成熟的光纤激光器、光纤放大器及高效激光频率转换技术,我们在实验中研制了一套瓦级输出的窄线宽连续波单频可调谐318.6 nm紫外激光系统,并在室温铯原子气室中实现了6S_(1/2)—nP_(3/2)(n=70—94)单光子跃迁里德伯激发.借助由铯原子6S_(1/2)(F=4)基态、6P_(3/2)(F′=5)激发态和nP_(3/2)(n=70—94)里德伯态构成的V型三能级系统,通过频率锁定于铯原子6S_(1/2)(F=4)—6P_(3/2)(F′=5)超精细跃迁的852.3 nm探测光束的吸收减弱信号获得了里德伯态的信息,并利用高精度波长计测量了铯原子nP_(3/2)(n=70—94)里德伯态的量子亏损值.经过与理论计算值的变化趋势进行对比,我们认为由于原子气室的里德伯屏蔽效应并不能完全屏蔽外部直流电场,铯原子气室内存在残余的直流电场,影响了对里德伯态的量子亏损值的实验测量.利用残余直流电场的Stark效应理论模型及其与有效主量子数n*的依赖关系,对铯原子里德伯态的量子亏损实验测量值进行了修正.修正后的铯原子nP_(3/2)(n=70—94)态量子亏损测量值为3.5591±0.0007,与理论计算值相吻合.
        A narrow-linewidth continuous-wave single-frequency tunable 318.6-nm ultraviolet laser system with wattlevel output power is developed in our experiment based on well-developed fiber lasers,fiber amplifiers,and efficient laser frequency conversion technique.Cesium 6S_(1/2)—nP_(3/2)(n=70—94) single-photon Rydberg excitation in a room-temperature cesium atomic vapor cell is realized by using our ultraviolet laser system.The single-photon Rydberg excitation signal is obtained via the V-type three-level atomic system which contains 6S_(1/2)(F=4) ground state,6P_(3/2)(F=5) excited state and one of nP_(3/2)(n=70—94) Rydberg states.When cesium atoms populated on the ground state are partially excited to Rydberg state by the ultraviolet laser,absorption of 852.3-nm probe beam which is locked to 6S_(1/2)(F=4)—6P_(3/2)(F′=5) hyperfine transition will decrease.In this way,the cesium Rydberg states are detected.The quantum defects for cesium nP_(3/2)(n=70—94) Rydberg states are experimentally measured with a high-precision wavemeter.The variation trend of experimentally measured data deviates from that of calculated values.Due to the fact that the cesium vapor cell is positioned in a magnetic shielding tank,the Zeeman effect can be ignored.Considering that the polarizability of Rydberg atoms is proportional to(n*)~7,in which n*is the effective principal quantum number,the Rydberg screen effect of cesium atomic vapor cell cannot completely protect cesium atoms from being perturbed by an external DC electric field.Therefore the residual DC electric field existing inside the cesium vapor cell will have a significant influence on quantum defect measurement of Rydberg atoms.Using the theoretical model of Stark effect and the relationship between polarizability of Rydberg atoms and the effective principal quantum number n*,the corrected experimental value of quantum defect for cesium nP_(3/2)(n=70—94) Rydberg states is found to be~(3.5591±0.0007).The corrected experimental value of quantum defect is consistent with the calculation.
引文
[1]Gallagher T F1994 Rydberg Atoms(Cambridge:Cambridge University Press)p12
    [2]Zimmerman M L,Littman M G,Kash M M,Kleppner D1979 Phys.Rev.A 20 2251
    [3]Sedlacek J A,Schwettmann A,Kübler H,Shaffer J P 2013Phys.Rev.Lett.111 063001
    [4]Carter J D,Cherry O,Martin J D D 2012 Phys.Rev.A 86053401
    [5]Sedlacek J A,Schwettmann A,Kübler H,L?w R,Pfau T,Shaffer J P 2012 Nature Phys.8 819
    [6]Zhao B,Müller M,Hammerer K,Zoller P 2010 Phys.Rev.A81 052329
    [7]Wilk T,Ga?tan A,Evellin C,Wolters J,Miroshnychenko Y,Grangier P,Browaeys A 2010 Phys.Rev.Lett.104 010502
    [8]Isenhower L,Urban E,Zhang X L,Gill A T,Henage T,Johnson T A,Walker T G,Saffman M 2010 Phys.Rev.Lett.104 010503
    [9]Saffman M,Walker T G,M?lmer K 2010 Rev.Mod.Phys.822313
    [10]Urban E,Johnson T A,Henage T,Isenhower L,Yavuz D D,Walker T G,Saffman M 2009 Nature Phys.5 110
    [11]Ga?tan A,Miroshnychenko Y,Wilk T,Chotia A,Viteau M,Comparat D,Pillet P,Browaeys A,Grangier P 2009 Nature Phys.5 115
    [12]Hankin A M,JauY Y,Parazzoli L P,Chou C W,Armstrong D J,Landahl A J,Biedermann G W 2014 Phys.Rev.A 89033416
    [13]Dudin Y O,Kuzmich A 2012 Science 336 887
    [14]Keating T,Goyal K,Jau Y Y,Biedermann G W,Landahl AJ,Deutsch I H 2013 Phys.Rev.A 87 052314
    [15]Wang J Y,Bai J D,He J,Wang J M 2016 J.Opt.Soc.Am.B 33 2020
    [16]Lorenzen C J,Niemax K 1984 Z.Phys.A:Atoms and Nuclei315 127
    [17]Li W H,Mourachko I,Noel M W,Gallagher T F 2003 Phys.Rev.A 67 052502
    [18]Wang J Y,Bai J D,He J,Wang J M 2017 Opt.Express 2522510
    [19]Baugh J F,Ciocca M,Edmonds D A,Nellesen P T,Burkhardt C E,Leventhal J J 1996 Phys.Rev.A 54 R4641
    [20]Gallagher T F,Humphrey L M,Hill R W,Cooke W E,Edelstein S A 1977 Phys.Rev.A 15 1937
    [21]Yang Z W,Jiao Y C,Han X X,Zhao J M,Jia S T 2017 Acta Phys.Sin.66 093202(in Chinese)[杨智伟,焦月春,韩小萱,赵建明,贾锁堂2017物理学报66 093202]
    [22]Osterwalder A,Merkt F 1999 Phys.Rev.Lett.82 1831
    [23]Li C Y,Zhang L J,Zhao J M,Jia S T 2012 Acta Phys.Sin.61 163202(in Chinese)[李昌勇,张临杰,赵建明,贾锁堂2012物理学报61 163202]
    [24]He X H,Li B W,Zhang C X 1989 Acta Phys.Sin.38 1717(in Chinese)[何兴虹,李白文,张承修1989物理学报38 1717]
    [25]Bai J D,Wang J Y,Liu S,He J,Wang J M 2018arXiv:1811.05092v1[physics.atom-ph]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700