多形拟杆菌肝素酶Ⅰ的SUMO融合表达及酶学特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:SUMO-Fused expression and characterization of Heparinase Ⅰ from Bacteroides thetaiotaomicron
  • 作者:张川 ; 张悦 ; 丁啸虎 ; 李中媛 ; 宋亚囝 ; 罗学刚
  • 英文作者:Chuan Zhang;Yue Zhang;Xiaohu Ding;Zhongyuan Li;Yajian Song;Xuegang Luo;Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology;National Demonstration Center for Experimental Bioengineering Education, Tianjin University of Science and Technology;
  • 关键词:多形拟杆菌 ; 肝素酶Ⅰ ; SUMO-Tag ; 融合表达 ; 酶学性质
  • 英文关键词:Bacteroides thetaiotaomicron;;heparinase Ⅰ;;SUMO-Tag;;fusion expression;;enzymological properties
  • 中文刊名:WSXB
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:天津科技大学生物工程学院工业发酵微生物教育部重点实验室暨天津市工业微生物重点实验室;天津科技大学生物工程国家级实验教学示范中心;
  • 出版日期:2018-11-30 10:50
  • 出版单位:微生物学报
  • 年:2019
  • 期:v.59;No.351
  • 基金:国家重点研发计划(2017YFD0400303);; 国家“863计划”(2012AA021505)~~
  • 语种:中文;
  • 页:WSXB201907012
  • 页数:13
  • CN:07
  • ISSN:11-1995/Q
  • 分类号:114-126
摘要
【目的】克隆多形拟杆菌(Bacteroides thetaiotaomicron) HeparinaseⅠ基因,在大肠杆菌(Escherichia coli)中进行基因工程表达获得重组酶SUMO-Bt-HepI和Bt-HepI,并研究其酶学特性。【方法】对B.thetaiotaomicron肝素酶I (Bt-HepI)的基因序列进行密码子优化,PCR扩增得到目的基因,构建表达载体pET-28a-Bt-HepⅠ和pE-SUMO-Bt-HepⅠ,并转化至E.coliRosetta(DE3)进行表达,分别得到重组产物Bt-HepⅠ和SUMO-Bt-HepⅠ,以肝素钠为底物研究两者的酶学性质。【结果】SDS-PAGE检测显示Bt-HepⅠ和SUMO-Bt-HepⅠ的分子量大小分别约为42.5 kDa和55 kDa。与Bt-HepI相比,融合SUMO-Tag后的肝素酶I比酶活提高了48.9%。酶学性质表明:Bt-HepⅠ和SUMO-Bt-HepⅠ的最适pH和温度均为pH 9、45°C,二者在pH 5–9都具有很好的稳定性,但pH<5时,SUMO-Bt-HepI的耐酸性明显高于Bt-HepI。同时,在温度低于50°C时,SUMO-Bt-HepⅠ的比酶活高于Bt-HepⅠ。此外,Ca~(2+)和Mg~(2+)对重组肝素酶I具有明显的促进作用,而Cu~(2+)、Mn~(2+)、Zn~(2+)则表现出一定的抑制作用,提示在多形拟杆菌肝素酶I的结构中除了存在已知的Ca~(2+)结合位点外,可能还存在Mg~(2+)的结合位点。【结论】本研究首次将多形拟杆菌来源的肝素酶I和SUMO-Tag进行了融合表达,使其比酶活得到了显著的提高,为其生产应用奠定了基础。
        [Objective] To clone and recombinant express the gene Heparinase I from Bacteroides thetaiotaomicron,and then characterize the recombinant SUMO-Bt-HepⅠ and Bt-HepⅠ. [Methods] Codon optimization was done on the gene sequence of B. thetaiotaomicron heparinase I. The target gene was obtained by PCR amplification, inserted into the expression vectors pET-28 a and pE-SUMO, and then transformed into E. coli Rosetta(DE3) to obtain recombinant products Bt-HepⅠ and SUMO-Bt-HepⅠ. Heparin sodium was used as substrate to study the enzymatic properties of the recombinant proteins. [Results] SDS-PAGE analysis showed that the molecular weights of Bt-HepⅠ and SUMO-Bt-HepⅠ were about 42.5 kDa and 55 kDa, respectively. Compared with Bt-HepⅠ, the specific enzyme activity of Heparinase I increased by 48.9% after fusion SUMO-Tag. The enzymological properties showed that the optimum pH and temperature of Bt-HepⅠ and SUMO-Bt-HepⅠ were pH 9 and 45 °C, and both recombinant enzymes were stable at pH 5–9, while the acid resistance of SUMO-Bt-HepⅠ was obviously higher than Bt-HepⅠ when the pH value was lower than 5. Besides, SUMO-Bt-HepⅠ also showed higher activities than Bt-HepⅠ under50 °C. In addition, Ca~(2+) and Mg~(2+) have obvious promoting effect on the recombinant heparinase I, while Cu~(2+),Mn~(2+) and Zn~(2+) show certain inhibiting effect, suggesting that in addition to the well-known Ca~(2+) binding site, Mg~(2+)binding sites may aslo exist in the structure of B. thetaiotaomicron Heparinase I. [Conclusion] Recombinant Heparinase I in B. thetaiotaomicron using SUMO fusion system significantly improved its specific enzyme activity for potential production and application.
引文
[1]Witczak ZJ,Nieforth KA.Carbohydrates in drug design.European Journal of Medicinal Chemistry,1997,32(11):842.
    [2]Galliher PM,Cooney CL,Langer R,Linhardt RJ.Heparinase production by Flavobacterium heparinum.Applied and Environmental Microbiology,1981,41(2):360-365.
    [3]Kim BT,Kim WS,Kim YS,Linhardt RJ,Kim DH.Purification and characterization of a novel heparinase from Bacteroides stercoris HJ-15.The Journal of Biochemistry,2000,128(2):323-328.
    [4]Yoshida E,Sakai K,Tokuyama S,Miyazono H,Maruyama H,Morikawa K.Purification and characterization of heparinase that degrades both heparin and heparan sulfate from Bacillus circulans.Bioscience,Biotechnology,and Biochemistry,2002,66(5):1181-1184.
    [5]Yang VC,Linhardt RJ,Bernstein H,Cooney CL,Langer R.Purification and characterization of heparinase from Flavobacterium heparinum.Journal of Biological Chemistry,1985,260(3):1849-1857.
    [6]Sasisekharan R,Moses MA,Nugent MA,Cooney CL,Langer R.Heparinase inhibits neovascularization.Proceedings of the National Academy of Sciences of the United States of America,1994,91(4):1524-1528.
    [7]Ernst S,Venkataraman G,Winkler S,Godavarti R,Langer R,Cooney CL,Sasisekharan R.Expression in Escherichia coli,purification and characterization of heparinase I from Flavobacterium heparinum.Biochemical Journal,1996,315(2):589-597.
    [8]Hirsh J,Warkentin TE,Shaughnessy SG,Anand SS,Halperin JL,Raschke R,Granger C,Ohman EM,Dalen JE.Heparin and low-molecular-weight heparin mechanisms of action,pharmacokinetics,dosing,monitoring,efficacy,and safety.Chest,2001,119(1):64S-94S.
    [9]Qureshi A,Perera A.Low molecular weight heparin versus unfractionated heparin in the management of cerebral venous thrombosis:A systematic review and meta-analysis.Annals of Medicine and Surgery,2017,17:22-26.
    [10]Welsby IJ,Newman MF,Phillips-Bute B,Messier RH,Kakkis ED,Stafford-Smith M.Hemodynamic changes after protamine administration:association with mortality after coronary artery bypass surgery.Anesthesiology,2005,102(2):308-314.
    [11]Guerrini M,Beccati D,Shriver Z,Naggi A,Viswanathan K,Bisio A,Capila I,Lansing JC,Guglieri S,Fraser B,Al-Hakim A,Gunay NS,Zhang ZQ,Robinson L,Buhse L,Nasr M,Woodcock J,Langer R,Venkataraman G,Linhardt RJ,Casu B,Torri G,Sasisekharan R.Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events.Nature Biotechnology,2008,26(6):669-675.
    [12]Aich U,Shriver Z,Tharakaraman K,Raman R,Sasisekharan R.Competitive inhibition of heparinase by persulfonated glycosaminoglycans:a tool to detect heparin contamination.Analytical Chemistry,2011,83(20):7815-7822.
    [13]Ameer GA,Harmon W,Sasisekharan R,Langer R.Investigation of a whole blood fluidized bed Taylor-Couette flow device for enzymatic heparin neutralization.Biotechnology and Bioengineering,1999,62(5):602-608.
    [14]Sasisekharan R,Bulmer M,Moremen KW,Cooney CL,Langer R.Cloning and expression of heparinase I gene from Flavobacterium heparinum.Proceedings of the National Academy of Sciences of the United States of America,1993,90(8):3660-3664.
    [15]Shpigel E,Goldlust A,Efroni G,Avraham A,Eshel A,Dekel M,Shoseyov O.Immobilization of recombinant heparinase I fused to cellulose-binding domain.Biotechnology and Bioengineering,1999,65(1):17-23.
    [16]Ling CF,Zhang JY,Lin DQ,Tao AL.Approaches for the generation of active papain-like cysteine proteases from inclusion bodies of Escherichia coli.World Journal of Microbiology and Biotechnology,2015,31(5):681-690.
    [17]Kapust RB,Waugh DS.Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused.Protein Science,1999,8(8):1668-1674.
    [18]Chen Y,Xing XH,Ye FC,Kuang Y,Luo MF.Production of MBP-HepA fusion protein in recombinant Escherichia coli by optimization of culture medium.Biochemical Engineering Journal,2007,34(2):114-121.
    [19]Namvar S,Barkhordari F,Raigani M,Jahandar H,Nematollahi L,Davami F.Cloning and soluble expression of matureα-luffin from Luffa cylindrica in E.coli using SUMOfusion protein.Turkish Journal of Biology,2018,42:23-32.
    [20]Li JH,Han QX,Zhang T,Du J,Sun QQ,Pang YL.Expression of soluble native protein in Escherichia coli using a cold-shock SUMO tag-fused expression vector.Biotechnology Reports,2018,19:e00261.
    [21]Zhang J,Sun AY,Dong YG,Wei DZ.Recombinant production and characterization of SAC,the core domain of Par-4,by SUMO fusion system.Applied Biochemistry and Biotechnology,2018,184(4):1155-1167.
    [22]Hartwig S,Frister T,Alemdar S,Li Z,Scheper T,Beutel S.SUMO-fusion,purification,and characterization of a(+)-zizaene synthase from Chrysopogon zizanioides.Biochemical and Biophysical Research Communications,2015,458(4):883-889.
    [23]Bernstein H,Yang VC,Cooney CL,Langer R.Immobilized heparin lyase system for blood deheparinization.Methods in Enzymology,1988,137:515-529.
    [24]Huang J,Cao L,Guo WH,Yuan RX,Jia ZJ,Huang KH.Enhanced soluble expression of recombinant Flavobacterium heparinum heparinase I in Escherichia coli by fusing it with various soluble partners.Protein Expression and Purification,2012,83(2):169-176.
    [25]Xu SQ,Zhang XY,Qiu ML,Chen JH.Design and expression of recombinant heparanase I fused to chitin binding domain and SUMO-Tag.Chemical Industry and Engineering Progress,2016,35(S2):315-318.(in Chinese)许淑琴,张轩月,邱美玲,陈敬华.ChBD和SUMO双功能融合肝素酶I的设计与表达.化学进展,2016,35(S2):315-318.
    [26]Xu J,Bjursell MK,Himrod J,Deng S,Carmichael LK,Chiang HC,Hooper LV,Gordon JI.A genomic view of the human-Bacteroides thetaiotaomicron symbiosis.Science,2003,229(5615):2074-2076.
    [27]Luo YD,Huang XQ,McKeehan WL.High yield,purity and activity of soluble recombinant Bacteroides thetaiotaomicron GST-heparinase I from Escherichia coli.Archives of Biochemistry and Biophysics,2007,460(1):17-24.
    [28]Han YH,Garron ML,Kim HY,Kim WS,Zhang ZQ,Ryu KS,Shaya D,Xiao ZP,Cheong C,Kim YS,Linhardt RJ,Jeon YH,Cygler M.Structural snapshots of heparin depolymerization by heparin lyase I.Journal of Biological Chemistry,2009,284(49):34019-34027.
    [29]Ma XL,Wang ZS,Li SX,Shen Q,Yuan QS.Effect of CaCl2as activity stabilizer on purification of heparinase I from Flavobacterium heparinum.Journal of Chromatography B,2006,843(2):209-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700