中国东部森林最大总初级生产力的时空分布特征及其影响因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatiotemporal patterns of the maximum primary productivity and driving factors in the eastern China's forests
  • 作者:石旭霞 ; 宋沼鹏 ; 侯继华 ; 张雷明 ; 牛书丽 ; 王安志 ; 项文化 ; 王辉民
  • 英文作者:SHI Xu-xia;SONG Zhao-peng;HOU Ji-hua;ZHANG Lei-ming;NIU Shu-li;WANG An-zhi;XIANG Wen-hua;WANG Hui-min;College of Forestry,Beijing Forestry University;Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;Key Laboratory of Forest Ecology and Management,Institute of Applied Ecology,Chinese Academy of Sciences;Faculty of Life Science and Technology,Central South University of Forestry and Technology;
  • 关键词:气候变化 ; 中国东部南北森林样带 ; 最大总初级生产力 ; 年际变化 ; 涡度数据
  • 英文关键词:climate change;;the North-South Transect of Eastern China(NSTEC);;GPP at the optimum temperature(GPP_(max));;interannual variation;;flux data
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:北京林业大学林学院;中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室;中国科学院沈阳应用生态研究所;中南林业科技大学生命科学与技术学院;
  • 出版日期:2019-06-12 13:12
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.312
  • 基金:国家重点研发计划(2017YFC0504004)资助
  • 语种:中文;
  • 页:STXZ201907001
  • 页数:13
  • CN:07
  • ISSN:21-1148/Q
  • 分类号:3-15
摘要
生态系统碳循环对温度的响应是全球变化生态学的重要研究内容之一。总初级生产力(GPP)随着温度的升高而升高,在最适温下达到最大值(GPP_(max)),之后随温度的升高而保持不变甚至下降,因此GPP_(max)代表着最适温度下的植被光合潜力。然而,关于森林生态系统GPP_(max)的时空分布和影响因子仍不清楚。本文以中国东部南北森林样带(NSTEC)上的长白山温带针阔混交林、会同亚热带杉木人工林、千烟洲亚热带常绿针叶人工林、鼎湖山亚热带常绿针阔混交林和西双版纳热带季雨林等5种典型生态系统为对象,利用涡度相关技术分析森林GPP_(max)的时空规律及其主要影响因素。结果表明:在所有森林生态系统中,GPP对温度的响应模式均为单峰曲线,最适温下的GPP_(max)表现为长白山温带针阔混交林>千烟洲亚热带常绿针叶人工林>西双版纳热带季雨林>会同亚热带杉木人工林>鼎湖山亚热带常绿针阔混交林。在所有的站点中,温度是引起GPP_(max)空间变异的最主要因素,GPP_(max)随温度的增加而减少。此外,太阳辐射、降水和饱和蒸汽压差也显著影响GPP_(max)。在时间尺度上,对每个森林生态系统GPP_(max)年际变异的对比分析发现,温度是长白山温带针阔混交林GPP_(max)年际变化的主要控制因子,5 cm土壤含水量是影响会同、千烟洲和鼎湖山通量观测系统GPP_(max)年际变异的主要因子,未发现影响西双版纳热季雨林年际变异的主要因子。本研究有助于理解未来气候变暖背景下GPP的变化趋势,并为中国碳循环的准确模拟提供实验证据和参数依据。
        The response of ecosystem carbon cycle to temperature is one of the major topics in the research field of global change ecology. The general pattern of the response of gross primary productivity( GPP) to temperature usually shows that GPP increases with temperature at the lower temperature range to reach a _(max)imum value( GPP_(max)),and then declines as temperature increases further. Thus,GPP_(max)represents the photosynthetic potential of vegetation at the optimum temperature. However,our understanding on the spatial and temporal patterns and main driving factors of GPP_(max)in forest ecosystems are still limited. In this study,we analyzed the temporal and spatial distribution of GPP_(max)and main influencing factors in five typical forest ecosystems based on flux data( temperate coniferous and broad-leaved mixed forest of Changbaishan,subtropical Chinese fir( Cunninghamia lanceolata) plantation of Huitong,subtropical evergreen coniferous forest of Qianyanzhou,subtropical evergreen broad-leaf and coniferous mixed forest of Dinghushan,and tropical monsoon forest of Xishuangbanna) along the North-South Transect of Eastern China( NSTEC),which covered tropical,subtropical,and temperate climate zones. The results showed that the temperature response of GPP showed a unimodal pattern,with GPP_(max) occurring at the optimum temperature in each year for all ecosystems. GPP_(max)at the optimum temperature in forests were ranked following the order: Changbaishan > Qianyanzhou > Xishuangbanna > Huitong > Dinghushan. Temperature played the most important role in driving the spatial variation of GPP_(max)across sites,with GPP_(max)decreasing with the increases of temperatur. Solar radiation,precipitation and VPD affected GPP_(max). For the interannual variation of GPP_(max)in each site,GPP_(max)in Changbaishan was mainly controlled by air temperature and by soil water content in Huitong,Qianyanzhou,and Dinghushan forests. We failed to find the main factors affecting interannual variation of tropical rainforest in Xishuangbanna. Our results benefit the understanding of GPP variation under climate change and provide evidence and parameter for accurate simulation of carbon cycle.
引文
陈晓峰,江洪,牛晓栋,等.2016.季节性高温和干旱对亚热带毛竹林碳通量的影响.应用生态学报,27(2):335-344.
    方精云,柯金虎,唐志尧,等.2001.生物生产力的“4P”概念、估算及其相互关系.植物生态学报,25(4):414-419.
    关德新,吴家兵,于贵瑞,等.2004.气象条件对长白山阔叶红松林CO2通量的影响.中国科学:地球科学,34(s2):103-108.
    郭群,李胜功,胡中民,等.2015.内蒙古温带草原典型草地生态系统生产力对水分在不同时间尺度上的响应.中国沙漠,35(3):616-623.
    李登秋,张春华,居为民,等.2016.江西省森林净初级生产力动态变化特征及其驱动因子分析.植物生态学报,40(7):643-657.
    李登秋,周艳莲,居为民,等.2014.太阳辐射变化对亚热带人工常绿针叶林总初级生产力影响的模拟分析.植物生态学报,38(3):219-230.
    刘国华,傅伯杰.2001.全球气候变化对森林生态系统的影响.自然资源学报,16(1):71-78.
    刘允芬,于贵瑞,温学发,等.2006.千烟洲中亚热带人工林生态系统CO2通量的季节变异特征.中国科学:地球科学,36(s1):91.
    毛德华,王宗明,罗玲,等.2012.基于MODIS和AVHRR数据源的东北地区植被NDVI变化及其与气温和降水间的相关分析.遥感技术与应用,27(1):77-85.
    彭少麟,赵平,任海,等.2002.全球变化压力下中国东部样带植被与农业生态系统格局的可能性变化.地学前缘,9(1):217-226.
    任小丽,何洪林,刘敏,等.2012.基于模型数据融合的千烟洲亚热带人工林碳水通量模拟.生态学报,32(23):7313-7326.
    王春林,于贵瑞,周国逸,等.2006.鼎湖山常绿针阔叶混交林CO2通量估算.中国科学:地球科学,36(s1):119-129.
    王宗明,国志兴,宋开山,等.2009.中国东北地区植被ND-VI对气候变化的响应.生态学杂志,28(6):1041-1048.
    闫俊华,周国逸,张德强,等.2003.鼎湖山顶级森林生态系统水文要素时空规律.生态学报,23(11):2359-2366.
    杨雪梅,杨太保,刘海猛,等.2016.气候变暖背景下近30 a北半球植被变化研究综述.干旱区研究,33(2):379-391.
    于贵瑞,张雷明,孙晓敏.2014.中国陆地生态系统通量观测研究网络(China FLUX)的主要进展及发展展望.地理科学进展.33(7):903-917.
    张雷明,曹沛雨,朱亚平,等.2015.长白山阔叶红松林生态系统光能利用率的动态变化及其主控因子.植物生态学报,39(12):1156-1165.
    张雷明,于贵瑞,孙晓敏,等.2006.中国东部森林样带典型生态系统碳收支的季节变化.中国科学:地球科学,36(s1):45-59.
    张雷明.2006.中国东部南北森林样带典型生态系统碳收支特征及其生理生态学机制(博士学位论文).北京:中国科学院地理科学与资源研究所.
    张利平,赵仲辉.2010.会同杉木人工林土壤热通量特征.中南林业科技大学学报,30(5):12-17.
    张一平,赵双菊,于贵瑞,等.2005.西双版纳热带季节雨林干热季林冠上小气候特征及CO2通量的观测.生态学报,25(10):2540-2549.
    Allen CD,Macalady AK,Chenchouni H,et al.2010.A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests.Forest Ecology and Management,259:660-684.
    Baldocchi D,Falge E,Gu LH,et al.2001.FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide,water vapor,and energy flux densities.Bulletin of the American Meteorological Society,82:2415-2434.
    Baldocchi D.2014.Measuring fluxes of trace gases and energy between ecosystems and the atmosphere:The state and future of the eddy covariance method.Global Change Biology,20:3600-3609.
    Beer C,Reichstein M,Tomelleri E,et al.2010.Terrestrial gross carbon dioxide uptake:Global distribution and covariation with climate.Science,329:834-838.
    Bernacchi CJ,Pimentel C,Long SP.2003.In vivo temperature response functions of parameters required to model Ru BP-limited photosynthesis.Plant,Cell&Environment,26:1419-1430.
    Bernacchi CJ,Singsaas EL,Pimentel C,et al.2001.Improved temperature response functions for models of Rubisco-limited photosynthesis.Plant,Cell&Environment,24:253-259.
    Booth BBB,Jones CD,Collins M,et al.2012.High sensitivity of future global warming to land carbon cycle processes.Environmental Research Letters,7:24002.
    Chu HS,Baldocchi DD,John R,et al.2017.Fluxes all of the time?A primer on the temporal representativeness of FLUXNET.Journal of Geophysical Research:Biogeosciences,122:289-307.
    Churkina G,Schimel D,Braswell BH,et al.2010.Spatial analysis of growing season length control over net ecosystem exchange.Global Change Biology,11:1777-1787.
    Dass P,Rawlins MA,Kimball JS,et al.2016.Environmental controls on the increasing GPP of terrestrial vegetation across northern Eurasia.Biogeosciences,13:45-62.
    Engelbrecht BMJ,Comita LS,Condit R,et al.2007.Drought sensitivity shapes species distribution patterns in tropical forests.Nature,447:80-82.
    Falge E,Baldocchi D,Tenhunen J,et al.2002.Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements.Agricultural and Forest Meteorology,113:53-74.
    Farrior CE,Rodriguez-Iturbe I,Dybzinski R,et al.2015.Decreased water limitation under elevated CO2amplifies potential for forest carbon sinks.Proceedings of the National Academy of Sciences of the United States of America,112:7213-7218.
    Granier A,Reichstein M,Bréda N,et al.2007.Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year:2003.Agricultural and Forest Meteorology,143:123-145.
    Grant RF,Wall GW,Kimball BA,et al.1999.Crop water relations under different CO2and irrigation:testing of ecosys with the free air CO2enrichment(FACE)experiment.Agricultural and Forest Meteorology,95:27-51.
    Grant RF,Margolis HA,Barr AG,et al.2008.Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales.Tree Physiology,29:1-17.
    Guo Q,Li S,Hu Z,et al.2016.Responses of gross primary productivity to different sizes of precipitation events in a temperate grassland ecosystem in Inner Mongolia,China.Journal of Arid Land,8:36-46.
    Hart SC.2006.Potential impacts of climate change on nitrogen transformations and greenhouse gas fluxes in forests:a soil transfer study.Global Change Biology,12:1032-1046.
    IPCC.2013.Climate Change 2013:The Physical Science Basis.Contribution of Working:866-871.
    Jordan DB,Ogren WL.1984.The CO2/O2specificity of ribulose1,5-bisphosphate carboxylase/oxygenase.Planta,161:308-313.
    Ju WM,Wang SQ,Yu GR,et al.2010.Modeling the impact of drought on canopy carbon and water fluxes for a subtropical evergreen coniferous plantation in southern China through parameter optimization using an ensemble Kalman filter.Biogeosciences,7:845-857.
    Jung M,Reichstein M,Ciais P,et al.2010.Recent decline in the global land evapotranspiration trend due to limited moisture supply.Nature,467:951-954.
    Kim Y,Kimball JS,Zhang K,et al.2012.Satellite detection of increasing Northern Hemisphere non-frozen seasons from1979 to 2008:Implications for regional vegetation growth.Remote Sensing of Environment,121:472-487.
    Lin YS,Medlyn BE,Ellsworth DS.2012.Temperature responses of leaf net photosynthesis:the role of component processes.Tree Physiology,32:219-231.
    Loik ME,Redar SP,Harte J.2000.Photosynthetic responses to a climate-warming manipulation for contrasting meadow species in the Rocky Mountains,Colorado,USA.Functional Ecology,14:166-175.
    Lu N,Sun G,Feng XM,et al.2013.Water yield responses to climate change and variability across the North-South Transect of Eastern China(NSTEC).Journal of Hydrology,481:96-105.
    Mekonnen ZA,Grant RF,Schwalm C.2016.Contrasting changes in gross primary productivity of different regions of North America as affected by warming in recent decades.Agricultural and Forest Meteorology,218:50-64.
    Mulkey SS,Wright SJ.1996.Influence of seasonal drought on the carbon balance of tropical forest plants//Tropical forest plant ecophysiology.Springer,Boston,MA:187-216.
    Nicholls N,Gruza G V,Jouzel J,et al.1996.Observed climate variability and change.Princeton:Cambridge:Cambridge University Press.
    Niu SL,Li ZX,Xia JY,et al.2008.Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China.Environmental and Experimental Botany,63:91-101.
    Niu SL,Luo YQ,Fei SF,et al.2012.Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.New Phytologist,194:775-783.
    Oberbauer SF,Tweedie CE,Welker JM,et al.2007.Tundra CO2fluxes in response to experimental warming across latitudinal and moisture gradients.Ecological Monographs,77:221-238
    Pan Y,Birdsey RA,Fang J,et al.2011.A large and persistent carbon sink in the world’s forests.Science,333:988-993.
    Papale D,Reichstein M,Aubinet M,et al.2006.Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique:algorithms and uncertainty estimation.Biogeosciences,3:571-583.
    Shaver GR,Canadell J,Chapin FS,et al.2000.Global warming and terrestrial ecosystems:A conceptual framework for analysis.AIBS Bulletin,50:871-882.
    Smith NG,Dukes JS.2017.Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.Global Change Biology,23:4840-4853.
    Smith NG,Dukes JS.2018.Drivers of leaf carbon exchange capacity across biomes at the continental scale.Ecology,99:1610-1620.
    Sun X,Wen X,Yu G,et al.2006.Seasonal drought effects on carbon sequestration of a mid-subtropical planted forest of southeastern China.Science in China Series D:Earth Sciences,49:110-118.
    Turnbull MH,Murthy R,Griffin KL.2002.The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides.Plant,Cell&Environment,25:1729-1737.
    Van GE,Jaj B,Briggs P,et al.2013.Primary and secondary effects of climate variability on net ecosystem carbon exchange in an evergreen Eucalyptus forest.Agricultural&Forest Meteorology,182-183:248-256.
    Walther GR,Post E,Convey P,et al.2002.Ecological responses to recent climate change.Nature,416:389.
    Wang X,Ma M,Huang G,et al.2012.Vegetation primary production estimation at maize and alpine meadow over the Heihe River Basin,China.International Journal of Applied Earth Observation and Geoinformation,17:94-101.
    Way DA,Yamori W.2014.Thermal acclimation of photosynthesis:On the importance of adjusting our definitions and accounting for thermal acclimation of respiration.Photosynthesis Research,119:89-100.
    Yamori W,Hikosaka K,Way DA.2014.Temperature response of photosynthesis in C3,C4,and CAM plants:Temperature acclimation and temperature adaptation.Photosynthesis Research,119:101-117.
    Yamori W,Noguchi KO,Hikosaka K,et al.2010.Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances.Plant Physiology,152,388-399.
    Zhang Q,Cheng YB,Lyapustin AI,et al.2014.Estimation of crop gross primary production(GPP):I.Impact of MODISobservation footprint and impact of vegetation BRDF characteristics.Agricultural and Forest Meteorology,191:51-63.
    Zhu WQ,Tian HQ,Xu XF,et al.2012.Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982-2006.Global Ecology and Biogeography,21:260-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700