产液气井泡沫排液起泡能力分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The foamability analysis of foam drainage in liquid-producing gas wells
  • 作者:张振楠 ; 孙宝江 ; 王志远 ; 高永海 ; 许亮斌 ; 袁凯鹏 ; 相华
  • 英文作者:Zhang Zhennan;Sun Baojiang;Wang Zhiyuan;Gao Yonghai;Xu Liangbin;Yuan Kaipeng;Xiang Hua;School of Petroleum Engineering,China University of Petroleum;CNOOC Research Institute Company Limited;Faculty of Oil and Gas Field Development,Gubkin Russian State University of Oil and Gas;
  • 关键词:泡沫排液 ; 积液 ; 起泡能力 ; 气体夹带 ; 流型
  • 英文关键词:foam drainage;;liquid loading;;foamability;;gas entrainment;;flow pattern
  • 中文刊名:SYXB
  • 英文刊名:Acta Petrolei Sinica
  • 机构:中国石油大学石油工程学院;中海油研究总院有限责任公司;俄罗斯国立古勃金石油天然气大学油气田开发学院;
  • 出版日期:2019-01-15
  • 出版单位:石油学报
  • 年:2019
  • 期:v.40
  • 基金:国家重点基础研究发展计划(973)项目(2015CB251200);; 国家科技重大专项(2016ZX05028-001,2016ZX05020-006);; 教育部创新团队项目(IRT_14R58)资助
  • 语种:中文;
  • 页:SYXB201901009
  • 页数:7
  • CN:01
  • ISSN:11-2128/TE
  • 分类号:112-118
摘要
起泡能力是决定产液气井泡沫排液效果的关键,但其评价依赖实验手段,缺少理论模型。针对现阶段缺乏起泡模型的环雾流及搅拌流,基于能量守恒原理,考虑界面张力对气体夹带的影响,以诱发气体夹带的液膜射流湍动能与夹带气泡的表面能增加速率相等为假设条件,建立了起泡模型,并通过实验数据进行了验证。基于起泡模型,给出了环雾流和搅拌流起泡所需界面张力的预测式,分析了不同流型的起泡能力。结果表明:在环雾流和搅拌流中,降低界面张力,韦伯数大于临界值时气体夹带发生,大气体质量流速确保充足的气体被夹带进入液膜,起泡能力强;段塞流中,降低界面张力,气体夹带速率增加,但受限于小气体质量流速,起泡能力弱;泡状流中,降低界面张力,促使气泡在泡状流顶部界面堆积形成泡沫,但小气体质量流速约束了气泡堆积速率,起泡能力弱。环雾流和搅拌流起泡能力强,适合泡沫排液,起泡所需界面张力可通过笔者建立的预测模型进行计算。
        The foamability is a key factor for the foam drainage in liquid-producing gas wells;however,its evaluation relies on experimental means,lacking support from theoretical models.At present,there is still no foaming model for annular flow and churn flow.Based on the energy conservation law,considering the effect of surface tension on gas entrainment,it is assumed the turbulent kinetic energy of liquid film jet used for inducing gas entrainment is equal to the increase rate of surface energy of the entrained bubbles,so as to establish the forming model,and this model is verified by experimental data.On the basis of the established foaming model,the prediction formula is proposed for the interface tension required by the foaming of annular flow and churn flow,and the foamability of different flow patterns is also analyzed.The results show that with the decreasing of interface tension in annular flow and churn flow,gas is entrained if Weber number is larger than the critical value.The large gas mass flow rate ensures sufficient gas entrained into liquid film,presenting strong foamability.The gas entrainment rate increases with the decreasing of interface tension in slug flow.However,limited by the small gas mass flow rate,the foamability is weak.In bubble flow,bubbles are accumulated at the top interface of bubble flow with the decreasing of interface tension.However,the bubble accumulation rate is limited by the small gas flow rate,which results in weak foamability.The strong foamability exists in annular flow and churn flow,applicable to foam drainage.The interface tension required by foaming can be calculated by the prediction formula proposed in this paper.
引文
[1]王香增.延长石油集团非常规天然气勘探开发进展[J].石油学报,2016,37(1):137-144.WANG Xiangzeng.Advances in unconventional gas exploration and development of Yanchang Petroleum Group[J].Acta Petrolei Sinica,2016,37(1):137-144.
    [2]宋振响,顾忆,路清华,等.松辽盆地梨树断陷天然气成因类型及勘探方向[J].石油学报,2016,37(5):622-630.SONG Zhenxiang,GU Yi,LU Qinghua,et al.Genetic types of natural gas and its exploration direction in Lishu fault sag,Songliao Basin[J].Acta Petrolei Sinica,2016,37(5):622-630.
    [3]李军,赵靖舟,王大兴,等.鄂尔多斯盆地中央古隆起东侧奥陶系中组合天然气成因与来源[J].石油学报,2016,37(7):821-831.LI Jun,ZHAO Jingzhou,WANG Daxing,et al.Genesis and source of the Ordovician mid-assemblage natural gas in the east side of the central paleo-uplift,Ordos Basin[J].Acta Petrolei Sinica,2016,37(7):821-831.
    [4]钱宇,王作栋,张婷,等.准噶尔盆地东部侏罗系烃源岩和天然气地球化学特征及低熟气勘探前景[J].石油学报,2017,38(1):44-54.QIAN Yu,WANG Zuodong,ZHANG Ting,et al.Geochemical characteristic of Jurassic source rocks and natural gas in the eastern Jungar Basin and exploration potential of low-mature gas[J].Acta Petrolei Sinica,2017,38(1):44-54.
    [5] LEA J F,NICKENS H V,WELLS M R.Gas well deliquification[M].2nd ed.Amsterdam Boston:Gulf Professional Publishing,2008.
    [6] YANG J,JOVANCICEVIC V,RAMACHANDRAN S.Foam for gas well deliquification[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,309(1/3):177-181.
    [7] SONI S N,KELKAR M G,PEREZ C.Pressure-drop predictions in tubing in the presence of surfactants[R].SPE120042,2009.
    [8] AJANI A,KELKAR M,SARICA C,et al.Foam flow in vertical gas wells under liquid loading:critical velocity and pressure drop prediction[J].International Journal of Multiphase Flow,2016,87:124-135.
    [9]李谦定,卢永斌,李善建,等.新型高效泡排剂LYB-1的研制及其性能评价[J].天然气工业,2011,31(6):49-52.LI Qianding,LU Yongbin,LI Shanjian,et al.Development and performance evaluation of a new efficient foam discharging agent LYB-1[J].Natural Gas Industry,2011,31(6):49-52.
    [10]胡世强,刘建仪,车朝山,等.气井泡沫排水采气的动态实验分析[J].天然气工业,2008,28(12):83-85.HU Shiqiang,LIU Jianyi,CHE Chaoshan,et al.Dynamic experimental analysis on foam drainage gas recovery in gas wells[J].Natural Gas Industry,2008,28(12):83-85.
    [11]吴志均,何顺利.低气液比携液临界流量的确定方法[J].石油勘探与开发,2004,31(4):108-111.WU Zhijun,HE Shunli.Determination of the critical liquid carrying flow rate at low gas liquid ratio[J].Petroleum Exploration and Development,2004,31(4):108-111.
    [12] TURNER R G,HUBBARD M G,DUKLER A E.Analysis and prediction of minimum flow rate for the continuous removal of liquids from gas wells[J].Journal of Petroleum Technology,1969,21(11):1475-1482.
    [13]雷登生,杜志敏,单高军,等.气藏水平井携液临界流量计算[J].石油学报,2010,31(4):637-639.LEI Dengsheng,DU Zhimin,SHAN Gaojun,et al.Calculation method for critical flow rate of carrying liquid in horizontal gas well[J].Acta Petrolei Sinica,2010,31(4):637-639.
    [14]王志彬,李颖川.气井连续携液机理[J].石油学报,2012,33(4):681-686.WANG Zhibin,LI Yingchuan.The mechanism of continuously removing liquids from gas wells[J].Acta Petrolei Sinica,2012,33(4):681-686.
    [15]李元生,李相方,藤赛男,等.气井携液临界流量计算方法研究[J].工程热物理学报,2014,35(2):291-294.LI Yuansheng,LI Xiangfang,TENG Sainan,et al.Research of gas well liquid-carrying critical rate model[J].Journal of Engineering Thermophysics,2014,35(2):291-294.
    [16] PILON L,VISKANTA R.Minimum superficial gas velocity for onset of foaming[J].Chemical Engineering and Processing:Process Intensification,2004,43(2):149-160.
    [17] BRAUNER N,ULLMANN A.Modelling of gas entrainment from Taylor bubbles.Part A:slug flow[J].International Journal of Multiphase Flow,2004,30(3):239-272.
    [18] VAN NIMWEGEN A T.The effect of surfactants on gas-liquid pipe flows[D].Delft:Delft University of Technology,2015.
    [19] AJANI A A.Experimental study and modeling of effect of surfactants on liquid loading in vertical pipes[D].Tulsa:The University of Tulsa,2014.
    [20] ROZENBLIT R,GUREVICH M,LENGEL Y,et al.Flow patterns and heat transfer in vertical upward air-water flow with surfactant[J].International Journal of Multiphase Flow,2006,32(8):889-901.
    [21] VAN NIMWEGEN A T,PORTELA L M,HENKES R A W M.The effect of surfactants on air-water annular and churn flow in vertical pipes.Part 1:morphology of the air-water interface[J].International Journal of Multiphase Flow,2015,71:133-145.
    [22] KAJI R,AZZOPARDI B J.The effect of pipe diameter on the structure of gas/liquid flow in vertical pipes[J].International Journal of Multiphase Flow,2010,36(4):303-313.
    [23] RODRIGUEZ D J,SHEDD T A.Entrainment of gas in the liquid film of horizontal,annular,two-phase flow[J].International Journal of Multiphase Flow,2004,30(6):565-583.
    [24] ISHII M,GROLMES M A.Inception criteria for droplet entrainment in two-phase concurrent film flow[J].AIChE Journal,1975,21(2):308-318.
    [25] COHEN-ADDAD S,HHLER R,PITOIS O.Flow in foams and flowing foams[J].Annual Review of Fluid Mechanics,2013,45(1):241-267.
    [26] KUMAR R,GOTTMANN M,SRIDHAR K R.Film thickness and wave velocity measurements in a vertical duct[J].Journal of Fluids Engineering,2002,124(3):634-642.
    [27] DASGUPTA A,CHANDRAKER D K,KSHIRASAGAR S,et al.Experimental investigation on dominant waves in upward air-water two-phase flow in churn and annular regime[J].Experimental Thermal and Fluid Science,2017,81:147-163.
    [28] HEWITT G F,ROBERTS D N.Studies of two-phase flow patterns by simultaneous X-ray and flast photography[R].AEREM-2159,1969.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700