6个种源地不同桑树品种叶柄解剖结构与水分运输能力初探
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Preliminary Study on Anatomical Characteristics and Water Transporting Capacity of Petioles from Six Varieties Originated from Different Habitations
  • 作者:沈萩荻 ; 吴艳 ; 刘利 ; 曹旭 ; 程嘉翎
  • 英文作者:Shen Qiudi;Wu Yan;Liu Li;Cao Xu;Cheng Jialing;Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology;Sericultural Research Institute of Liaoning Province;
  • 关键词:桑树 ; 叶柄 ; 解剖结构 ; 水分运输
  • 英文关键词:Mulberry;;Petiole;;Anatomical structure;;Water transportation
  • 中文刊名:CYKE
  • 英文刊名:Science of Sericulture
  • 机构:江苏科技大学生物技术学院江苏省蚕桑生物学与生物技术重点实验室;辽宁省蚕业科学研究所;
  • 出版日期:2019-04-09 17:00
  • 出版单位:蚕业科学
  • 年:2019
  • 期:v.45
  • 基金:国家自然科学基金项目(No.31700527);; 现代农业产业技术体系建设专项(No.CARS-18)
  • 语种:中文;
  • 页:CYKE201901001
  • 页数:8
  • CN:01
  • ISSN:32-1115/S
  • 分类号:9-16
摘要
叶柄是水分和营养物质在茎和叶间运输的重要组织。采用石蜡切片技术和木材离析技术,分析6个种源地不同的桑树品种一年生扦插苗叶柄的显微结构特征,对叶柄的水分运输能力和抗蒸腾能力进行评价,并对桑树的抗旱性进行探讨。结果显示在6个桑品种中,吴堡桑的叶柄角质层和厚角组织厚度较小,但维管束最为发达,具有较高的维管束面积占比、中等水平的导管直径和最大的导管长度,水分运输能力最强,同时还能保持对栓塞较强的抵抗性,推测其抗旱能力可能较强,适宜种植在较为干旱的地区;育711号的叶柄角质层较薄,云果桑1号叶柄的厚角组织最薄,这2个品种的叶柄具有较多的维管束,但其维管束面积占比、导管孔腔面积以及导管直径在6个品种中较小,故抗蒸腾能力与水分运输能力均较低,其抗旱能力可能相对较弱,更加适合在水分充足的环境中生长。研究结果为阐释桑树叶柄结构、水分运输能力与桑树抗旱能力之间的关系提供了一定的实验依据。
        The petiole, which connects the leaf to the stem, is an important vascular pathway of water and nutrients in plants. In order to evaluate the water transporting capacity and transpiration resistance of petiole among different mulberry varieties, the anatomical characteristics of petioles in one-year-old seedlings from six mulberry varieties originated from different habitations were analyzed using paraffin section technique and wood maceration method, and the drought tolerance was also discussed. The results show that among the six mulberry varieties, Wubusang has thinner petiole cuticle and collenchyma, the most developed vascular bundles, higher area ratio of vascular bundles, moderate vessel diameter and the longest vessel, which altogether contribute to its strongest ability of water transportation and resistance to embolism. It is suggested that Wubusang has the strongest drought resistance among the tested varieties and is suitable to be cultivated in relatively dry areas. Mulberry variety Yu 711 has relatively thinner cuticle, and Yunguosang 1 has the thinnest collenchyma. Though both of them possess more vascular bundles, the area ratio of vascular bundles, areas and diameters of vessel lumen are relatively lower among the six mulberry varieties, which indicate that they are weak in water transportation or transpiration resistance. Therefore, they are more suitable to be planted in areas with abundant water resources. These results provide reliable experimental basis for explaining the relationship between the petiole structure and water transporting capacity, as well as drought resistance of mulberry tree.
引文
[1] 林金莲,李桂琴.黑穗醋栗(Ribes nigrum L.)叶柄的结构和维管组织变化的研究[J].东北农业大学学报,1993,24(4):388-397
    [2] 黄焯.植物蒸腾作用高速率的原因分析[J].大科技,2015(29):229
    [3] 华梅.不同环境红瑞木的比较结构研究[D].长春:东北师范大学,2010
    [4] 杨犁.不同生态环境旱柳的结构及同工酶比较研究[D].长春:吉林农业大学,2013
    [5] 于秋雪.不同生态环境京山梅花演化结构研究[D].长春:东北师范大学,2016
    [6] 常鹏飞.不同生态环境夹竹桃的结构比较研究[D].长春:东北师范大学,2011
    [7] 于龙凤,安福全,高金和.黄瓜叶柄横切结构的数量特性研究[J].长江蔬菜,2011(4):33-36
    [8] 王晓钰,陈丹萍,徐光照,等.不同生态环境下水曲柳的解剖结构差异分析[J].安徽农业科学,2017,45(21):1-3
    [9] 于顺利,林尤兴.中国产瓦韦属植物叶柄与根状茎的比较解剖研究[J].植物研究,1997,17(1):60-64
    [10] 郑淑珍,邝炳朝.柚木种源抗旱性形态及解剖的研究[J].林业科学研究,1993,6(2):124-130
    [11] 楚光明,刘娜,牛攀新,等.准噶尔盆地三种荒漠植物木质部导管解剖特征[J].干旱区资源与环境,2016,30(2):104-109
    [12] 李昭良.不同桑树品种茎叶解剖结构的耐旱性特征研究[D].杨凌:西北农林科技大学,2014
    [13] 邱兴.美洲黑杨×青杨派杂交新无性系抗旱性研究[D].杨凌:西北农林科技大学,2015
    [14] 杜周和,刘俊凤,刘刚,等.桑树作水土防护经济林的研究[J].广西蚕业,2001,38(3):10-11
    [15] CAO X,JIA J B,LI H,et al.Photosynthesis,water use efficiency and stable carbon isotope composition are associated with anatomi-cal properties of leaf and xylem in six poplar species[J].Plant Biol,2012,14(4):612-620
    [16] ZIMMERMANN M H.Xylem structure and the ascent of sap[J].Science,2002,222(4623):500-501
    [17] 王秀华.东北鳞毛蕨科植物叶比较解剖的初步研究[J].植物研究,2001,21(2):202-205
    [18] 王东,高淑贞.中国连香树科的系统研究:Ⅰ.叶的宏观结构及叶柄维管束变化[J].西北植物学报,1990,10(1):37-41
    [19] 安福全,于龙凤,李富恒.辣椒叶柄解剖结构数量特性的研究[J].东北农业大学学报,2011,42(7):139-143
    [20] 王丽芳,于秋雪,朱俊义,等.不同生态环境蒙古栎的解剖结构差异分析[J].农业与技术,2015,35(3):64-65
    [21] 王佳佳.水分梯度下柠条锦鸡儿叶功能属性的干旱适应性研究[D].杨凌:西北农林科技大学,2015
    [22] SPERRY J S,HACKE U G,PITTERMANN J.Size and function in conifer tracheids and angiosperm vessels[J].Am J Bot,2006,93(10):1490-1500
    [23] 张海敏.八个树种叶片水分特性和茎导水特性的比较研究[D].呼和浩特:内蒙古农业大学,2010
    [24] HACKE U G,SPICER R,SCHREIBER S G,et al.An ecophysiological and developmental perspective on variation in vessel dia-meter[J].Plant Cell Environ,2017,40(6):831-845
    [25] ZUFFEREY V,COCHARD H,AMEGLIO T,et al.Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas)[J].Exp Bot,2011,62(11):3885-3894
    [26] 丁俊杰,张鑫,楚光明,等.三种荒漠植物导管特征及其可塑性研究[J].干旱区资源与环境,2016,30(9):171-177
    [27] LIU M,PAN R,TYREE M T.Intra-specific relationship between vessel length and vessel diameter of four species with long-to-short species-average vessel lengths:further validation of the computation algorithm[J].Trees,2018,32:51-60
    [28] 李丹.松嫩平原两种耐盐植物比较解剖研究[D].长春:东北师范大学,2006
    [29] KERSTIENS G.Cuticular water permeability and its physiological significance[J].Exp Bot,1996,47(305):1813-1832
    [30] RIEDERER M,SCHREIBER L.Protecting against water loss:analysis of the barrier properties of plant cuticles[J].Exp Bot,2001,52(363):2023-2032
    [31] 王帅.不同生态环境下沙枣的演化结构比较研究[D].长春:东北师范大学,2015
    [32] 董芳宇,王文娟,崔盼杰,等.胡杨叶片解剖特征及其可塑性对土壤条件响应[J].西北植物学报,2016,36(10):2047-2057
    [33] 杨贺雨,卫海燕,桑满杰,等.华中五味子叶表型可塑性及环境因子对叶表型的影响[J].植物学报,2016,51(3):322-334
    [34] 张东来,张玲,葛文志.不同光环境下胡桃楸幼苗的形态可塑性及其响应研究[J].植物研究,2017,37(5):658-663
    [35] 朱广龙,魏学智.酸枣叶片结构可塑性对自然梯度干旱生境的适应机制[J].生态学报,2018,36(19):6178-6187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700