基于硅基图形衬底的Ⅲ-Ⅴ族材料异质生长
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ⅲ-Ⅴ Material Heterogrowth on Patterned Silicon Substrates
  • 作者:吕奇峰 ; 洪文婷 ; 马刘红 ; 王昊 ; 韩伟华 ; 杨富华
  • 英文作者:Lü Qifeng;Hong Wenting;Ma Liuhong;Wang Hao;Han Weihua;Yang Fuhua;Engineering Research Center for Semiconductor Integrated Technology,Institute of Semiconductors,Chinese Academy of Sciences;
  • 关键词:硅基图形衬底 ; Ⅲ-Ⅴ族材料 ; 微通道外延 ; 选区生长 ; 纳米结构
  • 英文关键词:patterned silicon substrate;;Ⅲ-Ⅴ material;;micro-channel epitaxy;;selective area growth;;nanostructure
  • 中文刊名:BDTQ
  • 英文刊名:Micronanoelectronic Technology
  • 机构:中国科学院半导体研究所半导体集成技术工程研究中心;
  • 出版日期:2015-12-15
  • 出版单位:微纳电子技术
  • 年:2015
  • 期:v.52;No.463
  • 基金:国家自然科学基金资助项目(61376096)
  • 语种:中文;
  • 页:BDTQ201512010
  • 页数:11
  • CN:12
  • ISSN:13-1314/TN
  • 分类号:58-68
摘要
介绍了基于硅基图形衬底的Ⅲ-Ⅴ族材料异质生长的方法,主要包括选区生长Ⅲ-Ⅴ族纳米线和微通道外延薄膜。选区生长Ⅲ-Ⅴ族纳米线可以有效控制Ⅲ-Ⅴ族纳米线的直径,并控制位错扩散,从而可以在硅衬底上生长出高晶体质量的Ⅲ-Ⅴ族材料。同时,微沟道外延可以将位错限制在外延材料中极小范围内,保证外延材料的器件层晶体质量良好。微沟道外延分为两种形式:垂直生长和横向生长,原理分别是高深宽比陷阱和横向过生长。通过这两种生长形式,可以分别制备纳米条及纳米薄膜。硅基图形衬底的设计为Ⅲ-Ⅴ族材料在硅基衬底上集成提供了有效的途径,势必成为Ⅲ-Ⅴ族材料和硅异质集成的主流方法之一。
        The methods ofⅢ-Ⅴ material hetergrowth on patterned silicon substrates are introduced,mainly including selective area growth ofⅢ-Ⅴ nanowires and micro-channel epitaxial thin films.The selective area growth ofⅢ-Ⅴ nanowires can effectively control the diameter ofⅢ-Ⅴnanowires and the diffusion of dislocations,resulting in the growth ofⅢ-Ⅴ materials with high lattice quality grown on the silicon substrates.Meanwhile,the dislocation can be restricted to the limited area in the epitaxial material by micro-channel epitaxy to ensure the good lattice quality in the device layer of the epitaxial material.The micro-channel epitaxy can be classified into the vertical growth by high aspect ratio trapping and horizonal growth by lateral overgrowth,which prepare the nanostrips and nanofilms,respectively.The design of the patterned silicon substrates provides an effective way for integration ofⅢ-Ⅴ materials on silicon-based substrates.Obviously,it can be one of the mainstream methods for the heterogeneous integration ofⅢ-Ⅴ materials and silicon.
引文
[1]GUTIN A,KACHOROVSKII V,MURAVIEV A,et al.Plasmonic terahertz detector response at high intensities[J].Journal of Applied Physics,2012,112(1):014508-1-014508-5.
    [2]PARK S H,LIU Y,KHARCHE N,et al.Performance Comparisons ofⅢ-Ⅴand Strained-Si in Planar FETs and Nonplanar FinFETs at Ultrashort Gate Length(12 nm)[J].IEEE Transactions on Electron Devices,2012,59(8):2107-2114.
    [3]ALAMO J A D.Nanometre-scale electronics withⅢ-Ⅴcompound semiconductors[J].Nature,2011,479(7373):317-323.
    [4]ERTEKIN E,GREANEY P A,CHRZAN D C,et al.Equilibrium limits of coherency in strained nanowire heterostructures[J].Journal of Applied Physics,2005,97(11):114325-1-114325-10.
    [5]KOBLMULLER G,ABSTREITER G.Growth and properties of InGaAs nanowires on silicon[J].Physica Status SolidiRapid Research Letters,2014,8(1):11-30.
    [6]DAGATA J A,TSENG W,BENNETT J,et al.Selectivearea epitaxial-growth of gallium-arsenide on silicon substrates patterned using a scanning tunneling microscope operating in air[J].Applied Physics Letters,1990,57(23):2437-2439.
    [7]PLISSARD S,LARRIEU G,WALLART X,et al.High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning[J].Nanotechnology,2011,22(27):275602-275608.
    [8]SHIN J C,KIM D Y,LEE A,et al.Improving the composition uniformity of Au-catalyzed InGaAs nanowires on silicon[J].Journal of Crystal Growth,2013,372(3):15-18.
    [9]TOMIOKA K,TANAKA T,HARA S,et al.Ⅲ-Ⅴnanowires on Si substrate:selective-area growth and device applications[J].IEEE Journal of Selected Topics in Quantum Electronics,2011,17(4):1112-1129.
    [10]TAUSCH F W,LAPIERRE A G.A novel crystal growth phenomenon-single crystal GaAs overgrowth onto silicon dioxide[J].Journal of the Electrochemical Society,1965,112(7):706-709.
    [11]RAI-CHOUDHURY P.Epitaxial gallium arsenide from trimethyl gallium and arsine[J].Journal of the Electrochemical Society,1969.116(12):1745-1746.
    [12]JONES S H,LAU K M.Selective area growth of high-quality GaAs by OMCVD using native oxide masks[J].Journal of the Electrochemical Society,1987,134(12):3149-3155.
    [13]BJORK M T,SCHMID H,BRESLIN C M,et al.InAs nanowire growth on oxide-masked<111>silicon[J].Journal of Crystal Growth,2012,344(1):31-37.
    [14]TOMIOKA K,YOSHIMURA M,FUKUI T.Vertical In0.7Ga0.3As nanowire surrounding-gate transistors with high-kgate dielectric on Si substrate[C]//Proceedings of IEEE International Electron Devices Meeting(IEDM).Washington DC,USA,2011:33.3.1-33.3.4.
    [15]TOMIOKA K,YOSHIMURA M,FUKUI T.AⅢ-Ⅴnanowire channel on silicon for high-performance vertical transistors[J].Nature,2012,488(7410):189-193.
    [16]TOMIOKA K,FUKUI T.Recent progress in integration ofⅢ-Ⅴnanowire transistors on Si substrate by selective-area growth[J].Journal of Physics:D,2014,47(39):394001-394013.
    [17]WALLENTIN J,ANTTU N,ASOLI D,et al.InP nanowire array solar cells achieving 13.8%efficiency by exceeding the ray optics limit[J].Science,2013,339(6123):1057-1060.
    [18]YAO M Q,HUANG N F,CONG S,et al.GaAs nanowire array solar cells with axial p-i-n junctions[J].Nano Letters,2014,14(6):3293-3303.
    [19]NAKAI E,CHEN M Y,YOSHIMURA M,et al.InGaAs axial-junction nanowire-array solar cells[J].Japanese Journal of Applied Physics,2015,54(1):015201-1-015201-4.
    [20]NGUYEN H P T,CHANG Y L,SHIH I,et al.InN p-i-n nanowire solar cells on Si[J].IEEE Journal of Selected Topics in Quantum Electronics,2011,17(4):1062-1069.
    [21]ZHANG G,TATENO K,GOTOH H,et al.Structural,compositional,and optical characterizations of vertically aligned AlAs/GaAs/GaP heterostructure nanowires epitaxially grown on Si substrate[J].Japanese Journal of Applied Physics,2010,49(1):015001-1-015001-6.
    [22]DAS K P,HEINZ S,BJORK M T,et al.Selective area growth ofⅢ-Ⅴnanowires and their heterostructures on silicon in a nanotube template:towards monolithic integration of nano-devices[J].Nanotechnology,2013,24(22):225304-1-225304-6.
    [23]YANG L,MOTOHISA J,TAKEDA J,et al.Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence[J].Nanotechnology,2007,18(10):225304-1-225304-6.
    [24]FANG Q,GRADECAK S,YAT L,et al.Core/multishell nanowire heterostructures as multicolor,high-efficiency lightemitting diodes[J].Nano Letters,2005,5(11):2287-2291.
    [25]MOHAN P,MOTOHISA J,FUKUI T.Realization of conductive InAs nanotubes based on lattice-mismatched InP/InAs core-shell nanowires[J].Applied Physics Letters,2006,88(1):013110-1-013110-3.
    [26]JOYCE H J,KIM Y,GAO Q,et al.Growth,structural and optical properties of GaAs/AlGaAs core/shell nanowires with and without quantum well shells[C]//Proceedings of International Conference on Nanoscience and Nanotechnology.New York,USA,2006:594-597.
    [27]MOHSENI P K,MAUNDERS C,BOTTON G A,et al.GaP/GaAsP/GaP core-multishell nanowire heterostructures on(111)silicon[J].Nanotechnology,2007,18(44):445304-1-445304-6.
    [28]ZHANG G Q,TATENO K,SOGAWA T,et al.Vertically aligned GaP/GaAs core-multishell nanowires epitaxially grown on Si substrate[J].Applied Physics Express,2008,1(6):064003-1-064003-3.
    [29]TOMIOKA K,KOBAYASHI Y,MOTOHISA J,et al.Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111)substrate[J].Nanotechnology,2009,20(14):145302-01-145302-08.
    [30]TOMIOKA K,MOTOHISA J,HARA S,et al.GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si[J].Nano Letters,2010,10(5):1639-1644.
    [31]NAKAI E,YOSHIMURA M,TOMIOKA K,et al.GaAs/InGaP core-multishell nanowire-array-based solar cells[J].Japanese Journal of Applied Physics,2013,52(5):055002-1-055002-4.
    [32]NISHINAGA T.Microchannel epitaxy:an overview[J].Journal of Crystal Growth,2002,237/238/239:1410-1417.
    [33]FIORENZA J G,PARK J S,HYDRICK J M,et al.Aspect ratio trapping:a unique technology for integrating Ge andⅢ-Ⅴs with silicon CMOS[J].SiGe,Ge and Related Compounds 4:Materials,Processing,and Devices,2010,33(6):963-976.
    [34]LI J Z,BAI J,PARK J S,et al.Defect reduction of GaAs epitaxy on Si(001)using selective aspect ratio trapping[J].Applied Physics Letters,2007,91(2):021114-1-021114-3.
    [35]ZHAO Z M,YADAVALLI K,HAO Z B,et al.Direct integration ofⅢ-Ⅴcompound semiconductor nanostructures on silicon by selective epitaxy[J].Nanotechnology,2009,20(3):035304-1-035304-7.
    [36]LEE L,CHIEN K F,FAN W C,et al.Optical studies of GaAs nanowires grown on trenched Si(001)substrate by cathodoluminescence[J].Japanese Journal of Applied Physics,2012,51(6):06FG15-1-06FG15-4.
    [37]LEE L,FAN W C,KU J T,et al.Cathodoluminescence studies of GaAs nano-wires grown on shallow-trench-patterned Si[J].Nanotechnology,2010,21(46):465701-1-465701-5.
    [38]CIPRO R,BARON T,MARTIN M,et al.Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100)300 mm wafers for next generation non planar devices[J].Applied Physics Letters,2014,104(26):262103-1-262103-5.
    [39]GUO W,DATEL,PENA V,et al.Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001)[J].Applied Physics Letters,2014,105(6):062101-1-062101-3.
    [40]LANGDO T A,LEITZ C W,CURRIE M T,et al.High quality Ge on Si by epitaxial necking[J].Applied Physics Letters,2000,76(25):3700-3702.
    [41]OLSSON F,XIE M,LOURDUDOSS S,et al.Epitaxial lateral overgrowth of InP on Si from nano-openings:theoretical and experimental indication for defect filtering throughout the grown layer[J].Journal of Applied Physics,2008,104(9):093112-1-093112-6.
    [42]DEURA M,HOSHII T,TAKENAKA M,et al.Effect of Ga content on crystal shape in micro-channel selective-area MOVPE of InGaAs on Si[J].Journal of Crystal Growth,2008,310(23):4768-4771.
    [43]DEURA M,KONDO Y,TAKENAKA M,et al.Twin-free InGaAs thin layer on Si by multi-step growth using microchannel selective-area MOVPE[J].Journal of Crystal Growth,2010,312(8):1353-1358.
    [44]LOURDUDOSS S.Heteroepitaxy and selective area heteroepitaxy for silicon photonics[J].Current Opinion in Solid State&Materials Science,2012,16(2):91-99.
    [45]METAFERIA W,KATARIA H,SUN Y T,et al.Growth of InP directly on Si by corrugated epitaxial lateral overgrowth[J].Journal of Physics:D,2015,48(4):045102-1-045102-9.
    [46]PARK J,MOON D,PARK S,et al.Growth of GaN layer on patterned Al/Ti metal mask by metal-organic chemical vapor deposition[J].Japanese Journal of Applied Physics,2012,51(2):025501-1-025501-3.
    [47]MATSUMURA H,KANEMATSU Y,SHIMURA T,et al.Lateral polarity control in GaN based on selective growth procedure using carbon mask layers[J].Applied Physics Express,2009,2(10):101001-1-101001-3.
    [48]HIROTA Y,SHIRAI Y,IHA H,et al.Selective growth of(001)GaAs using apatterned graphene mask[J].Journal of Crystal Growth,2014,401:563-566.
    [49]BUMJOON K,KWANGTAEK L,SAMSEOK J,et al.Epitaxial lateral overgrowth of GaN on Si(111)substrates using high-dose,N+ion implantation[J].Chemical Vapor Deposition,2010,16(1/2/3):80-84.
    [50]NISHINAGA T,NAKANO T,ZHANG S.Epitaxial lateral overgrowth of GaAs by LPE[J].Japanese Journal of Applied Physics,1988,27(6):L964-L967.
    [51]NARITSUKA S,NISHINAGA T,TACHIKAWA M,et al.InP layer grown on(001)silicon substrate by epitaxial lateral overgrowth[J].Japanese Journal of Applied Physics,1995,34(11A):L1432-L1435.
    [52]MARCHAND H,WU X H,IBBETSON J P,et al.Microstructure of GaN laterally overgrown by metalorganic chemical vapor deposition[J].Applied Physics Letters,1998,73(6):747-749.
    [53]LI Q,NG K W,LAU K M.Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact(001)silicon[J].Applied Physics Letters,2015,106(7):072105-1-072105-4.
    [54]LI Q,NG K W,TANG C W,et al.Defect reduction in epitaxial InP on nanostructured Si(001)substrates with position-controlled seed arrays[J].Journal of Crystal Growth,2014,405(4):81-86.
    [55]CHIU C H,LIN C C,DENG D M,et al.Optical and electrical properties of GaN-based light emitting diodes grown on micro-and nano-scale patterned Si substrate[J].IEEE Journal of Quantum Electronics,2011,47(7):899-906.
    [56]WANG Z,JUNESAND C,METAFERIA W,et al.Ⅲ-Vs on Si for photonic applications—a monolithic approach[J].Materials Science and Engineering:B,2012,177(17):1551-1557.
    [57]KJELLMAN J O,SUGIYAMA M,NAKANO Y.Near-infrared electroluminescence and photo detection in InGaAs p-i-n microdisks grown by selective area growth on silicon[J].Applied Physics Letters,2014,104(24):241103-1-241103-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700