激光增材制造GH4099合金热处理后的显微组织及拉伸性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructures and Tensile Properties of GH4099 Alloy Fabricated by Laser Additive Manufacturing After Heat Treatment
  • 作者:吕豪 ; 杨志斌 ; 王鑫 ; 喻春光
  • 英文作者:Lü Hao;Yang Zhibin;Wang Xin;Yu Chunguang;Powertrain Research & Development Institute, Chongqing Chang′an Automobile Co., Ltd.;
  • 关键词:材料 ; 激光增材制造 ; GH4099合金 ; 热处理 ; 显微组织 ; 力学性能
  • 英文关键词:materials;;laser additive manufacturing;;GH4099 alloy;;heat treatment;;microstructure;;mechanical property
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:重庆长安汽车股份有限公司动力研究院;
  • 出版日期:2018-10-10
  • 出版单位:中国激光
  • 年:2018
  • 期:v.45;No.502
  • 语种:中文;
  • 页:JJZZ201810012
  • 页数:6
  • CN:10
  • ISSN:31-1339/TN
  • 分类号:83-88
摘要
主要研究了激光增材制造GH4099合金在不同热处理状态下的显微组织与室温拉伸性能。研究结果表明:沉积态试样的显微组织主要由外延生长的柱状晶组成,沉积态试样经过1120℃的固溶处理后发生了明显的再结晶,柱状晶内部的枝晶形貌消失,转变为细小的等轴晶组织,而且在等轴晶内部存在许多孪晶界;与固溶态试样相比,时效处理后的组织没有明显差异,显微组织仍然由细小的等轴晶组成,晶粒没有长大,γ基体上有明显的γ′相弥散析出;对比3种状态下的室温拉伸性能可以发现,固溶态试样的强度最低,塑性最高,而固溶-时效态试样的室温力学性能最好,呈现出较高的强度和塑性。这主要是因为高温固溶过程中发生了完全再结晶,试样内部的位错密度有所降低,而且没有γ′相的析出强化,而在时效过程中,γ′相充分析出阻碍了位错运动。
        Microstructures and room-temperature mechanical properties of GH4099 alloy fabricated by laser additive manufacturing after heat treatments are investigated. The results indicate that the microstructure of as-deposited sample is mainly composed of epitaxial growth columnar grains. After solution treatment at 1120 ℃, due to the occurrence of recrystallization, the columnar dendrites are replaced by fine equiaxed grains, and there are some twin boundaries in the grains. There is less difference in microstructures between the solution treated samples and the solution-aging treated samples, their microstructures are still composed of fine equiaxed grains, and the size of grains does not grow up. However, the γ′ phase precipitates in the γ matrix after the aging treatment. Compared with the tensile properties at room temperature of samples in three sates, it can be found that the solution samples have the lowest strength and highest plasticity, while the aging samples have the best performance with high strength and ductility at room temperature. The reason is that recrystallization fully takes place during the solution processing and the dislocation density is small, while the γ′ phase only precipitates after aging treatment, which can block dislocations movement.
引文
[1] China Aeronautical Materials Handbook Editorial Committee. China aeronautical materials handbook: deformed superalloys, cast superalloys[M]. Beijing: China Standard Press, 2011: 278-293. 《中国航空材料手册》编辑委员会. 中国航空材料手册:变形高温合金、铸造高温合金[M]. 北京: 中国标准出版社, 2011: 278-293.
    [2] Li D K. A prospect of superalloy in civil applications[J]. Shanghai Steel & Iron Research, 1993(4): 60-65. 李殿魁. 高温合金在民用领域中的应用前景[J]. 上海钢研, 1993(4): 60-65.
    [3] Huang W D, Lin X. Research progress in laser solid forming of high performance metallic component[J]. Materials China, 2010, 29(6): 12-27. 黄卫东, 林鑫. 激光立体成形高性能金属零件研究进展[J]. 中国材料进展, 2010, 29(6): 12-27.
    [4] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.
    [5] Huang W D. Laser solid forming[M]. Xi′an: Northwestern Polytechnical University Press, 2007: 1-21. 黄卫东. 激光立体成形[M]. 西安: 西北工业大学出版社, 2007: 1-21.
    [6] Lin X, Huang W D. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica: Informationis, 2015, 45(9): 1111-1126. 林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学: 信息科学, 2015, 45(9): 1111-1126.
    [7] Qin S X, Zhao R R, Zhang H B, et al. Influence of long-term thermal exposure on γ′-phase of GH99 alloy[J]. Transactions of Materials and Heat Treatment, 2017, 38(2): 55-60. 秦升学, 赵蕊蕊, 张弘斌, 等. 时效热处理对GH99中强化相γ′相的影响[J]. 材料热处理学报, 2017, 38(2): 55-60.
    [8] Lin X, Yang H O, Chen J, et al. Microstructure evolution of 316L stainless steel during laser rapid forming[J]. Acta Metallurgica Sinica, 2006, 42(4): 361-368. 林鑫, 杨海欧, 陈静, 等. 激光快速成形过程中316L不锈钢显微组织的演变[J]. 金属学报, 2006, 42(4): 361-368.
    [9] Wang J F, Sun Q J, Wang H, et al. Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding[J]. Materials Science & Engineering A, 2016, 676: 395-405.
    [10] Hu Y L, Lin X, Yu X B, et al. Effect of Ti addition on cracking and microhardness of Inconel 625 during the laser solid forming processing[J]. Journal of Alloys & Compounds, 2017, 711: 267-277.
    [11] Wang Z Q, Denlinger E, Michaleris P, et al. Residual stress mapping in Inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions[J]. Materials & Design, 2017, 113: 169-177.
    [12] Heigel J C, Michaleris P, Palmer T A. In situ monitoring and characterization of distortion during laser cladding of Inconel? 625[J]. Journal of Materials Processing Technology, 2015, 220: 135-145.
    [13] Mukherjee T, Zhang W, DebRoy T. An improved prediction of residual stresses and distortion in additive manufacturing[J]. Computational Materials Science, 2017, 126: 360-372.
    [14] Gan Z T, Liu H, Li S X, et al. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron[J]. International Journal of Heat and Mass Transfer, 2017, 111: 709-722.
    [15] Xia P C, Yu W F, Yu J J, et al. Influence of long-term thermal exposure on γ′ phase of DZ951 alloy[J]. Journal of Materials Engineering, 2007, 35(12): 8-11. 夏鹏成, 禹文芳, 于金江, 等. 长期时效对DZ951合金γ′ 相的影响[J]. 材料工程, 2007, 35(12): 8-11.
    [16] Yang Z S, Wei Y H, Song C Y, et al. Antiphase domain boundary energy of γ′ [Ni3(Al, Ti)] particles with various Al contents and their strengthening contribution to a Ni-base alloy GH99[J]. Acta Metallurgica Sinica, 1986, 22(6): 477-483. 杨枬森, 魏育环, 宋诚一, 等. 不同Al含量γ′相的反相畴界能及其对GH99镍基合金强度的贡献[J]. 金属学报, 1986, 22(6): 477-483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700