膨润土褐铁矿改性白云石催化松木棒气化工艺优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Processing optimization of pine rod gasification catalyzed by bentonite/limonite modified dolomite
  • 作者:牛永红 ; 王忠胜 ; 刘琨琨 ; 蔡尧尧 ; 李义科
  • 英文作者:Niu Yonghong;Wang Zhongsheng;Liu Kunkun;Cai Yaoyao;Li Yike;School of Energy and Environment, Inner Mongolia University of Science and Technology;Mining Research Institute, Inner Mongolia University of Science and Technology;
  • 关键词:气化 ; 生物质 ; 催化剂 ; 膨润土/褐铁矿改性白云石 ; 松木燃料棒 ; 积碳
  • 英文关键词:gasification;;biomass;;catalysts;;Fe-Dol-Ben(bentonite/limonite modified dolomite);;pine rod;;carbon deposition
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:内蒙古科技大学能源与环境学院;内蒙古科技大学矿业研究院;
  • 出版日期:2019-03-08
  • 出版单位:农业工程学报
  • 年:2019
  • 期:v.35;No.357
  • 基金:国家自然科学基金地区科学基金项目(51768054,51764046);; 内蒙古自然科学基金(2017MS(LH)0524);; 校企合作项目(2018073)
  • 语种:中文;
  • 页:NYGU201905029
  • 页数:7
  • CN:05
  • ISSN:11-2047/S
  • 分类号:242-248
摘要
针对白云石催化剂在生物质催化气化过程中易碎、易产生积碳失活问题,为提高其催化活性、抗积碳和再生性能,采用固定床下吸式气化炉试验系统,以Fe-Dol-Ben(膨润土/褐铁矿改性白云石)为催化剂,松木屑废料经成型为棒状颗粒为原料,进行高温水蒸气催化气化试验。研究气化温度(700~1000℃)、铁含量(质量分数为5%~20%)以及催化剂使用次数(1~4)等因素对松木棒催化气化性能及催化剂表面积碳影响。试验结果表明,水蒸气和松木棒的质量比(气料比)为1,催化剂的铁质量分数为15%,气化温度为900℃时气化气中氢气的体积分数达到最大值58.38%,Fe-Dol-Ben催化剂积碳量随气化温度升高逐渐减小,试验区间内1 000℃时达到最小值,较700℃减少了80%。气化气中氢气的体积分数随铁含量增加呈先增加后降低的趋势,积碳量呈先降低后增加,在铁质量分数为15%催化效果较好。Fe-Dol-Ben催化剂较相同条件下分别用膨润土及改性前白云石催化时积碳量分别减少了80.6%和53.6%。对催化剂进行再生再利用试验表明,使用后的Fe-Dol-Ben催化剂进行700℃煅烧再生后,其晶相与催化前基本相同,将其多次再生循环利用,随着使用次数的增加气化气中氢气的体积分数逐渐降低,催化剂的积碳量逐渐增大,使用4次并用于催化气化时氢气的体积分数仍接近50%,保持较好催化效果。综合气化效果、积碳量及经济性因素,Fe-Dol-Ben铁质量分数为15%,气化温度选取900℃为较理想工况。该研究可为改性白云石Fe-Dol-Ben催化剂的研制及生物质高温水蒸汽催化气化技术提供参考。
        In order to improve the catalytic activity, anti-carbon deposition and regeneration performance of dolomite catalyst which was easy to accumulate carbon and deactivate during biomass catalytic gasification, a fixed-bed suction gasifier test system was adopted in this study. Firstly, rod-shape particles were prepared from pine chips wastes using Fe-Dol-Ben(bentonite/limonite modified dolomite) as catalyst and fixed-bed downdraft gasifier as main body. An experimental system for biomass steam gasification was established. Then the high temperature steam catalytic gasification test was carried out with the above two raw materials. Finally, the effects of several factors on the catalytic gasification performance of pine wood and carbon deposition on the catalyst surface were studied. The factors affecting the catalytic gasification performance and carbon deposition on the catalyst surface were gasification temperature(temperature range is 700-1000 ℃), iron content(mass percentage range is 5%-20%) and the number of catalyst used(catalyst used number is 1-4). The results showed that the mass percentage of iron in FeD ol-Ben catalyst was 15%, the gasification temperature was 900 ℃, and the volume fraction of hydrogen in gasification gas reaches the maximum of 58.38% under the condition that the mass ratio of steam to pine wood was 1. The results also showed that with the increasing of gasification temperature, the carbon deposition in FeDol-Ben catalyst decreased gradually, reaching the minimum value at 1 000 ℃, 80% lower than that at 700 ℃. In addition, the volume fraction of hydrogen in gasified gas increased first and then decreased with the increasing of iron content. At the same time, the carbon content decreased first and then increased, and the catalytic effect was better when the iron mass content was 15%. Under the same conditions as bentonite and pre-modified dolomite, the carbon deposition of Fe-Dol-Ben catalyst decreased by 80.6% and 53.6%, respectively. The experiment of catalyst regeneration and reuse showed that the crystal phase of the catalyst was basically the same as that of the pre-catalyst after the Fe-Dol-Ben catalyst regeneration at 700 ℃. The volume fraction of hydrogen in gasification gas decreased with the increasing of the number of times of regeneration, and the carbon deposition of the catalyst increased gradually. The results also showed that the volume fraction of hydrogen was still close to 50% after four times of catalytic gasification, which maintained the catalytic effect. In summary, considering the gasification effect, carbon deposition and economic factors, the optimization conditions were iron content of 15% and gasification temperature of 900 ℃. The study can provide reference for the development of bentonite/limonite modified dolomite catalyst and biomass high temperature steam catalytic gasification technology.
引文
[1]Skoulou V,Swiderski A,Yang W,et al.Process characteristics and products of olive kernel high temperature steam gasification(HTSG)[J].Bioresour Technology,2009,100(8):2444-2451.
    [2]Nimit N,Islam I A,Ashwani K G.Hydrogen and syngas yield from residual branches of oilpalm tree using steam gasification[J].International Journal of Hydrogen Energy,2011,36(6):3835-3843.
    [3]Aitziber E,Gartzen L,Maider A,et al.Syngas from steam gasification of polyethlene in a conical spouted bed reactor[J]Fuel,2013,109(7):461-469.
    [4]牛永红,韩枫涛,张雪峰,等.白云石催化松木燃料棒水蒸气气化试验[J].农业机械学报,2016,47(12):246-252.Niu Yonghong,Han Fengtao,Zhang Xuefeng,et al.Experiment on steam gasification of pine fuel rods with dolomite catalyst[J].Transactions of the Chinese Society of Agricultural Engineering,2016,47(12):246-252.(in Chinese with English abstract)
    [5]马承荣,肖波,陈英明.生物质气化制取富氢燃气的实验研究[J].燃烧科学与技术,2007,13(5):461-467.Ma Chenrong,Xiao Bo,Chen Yingming.Experimentsal research on biomass gasification for hydrogen rich gas production[J].Journal of Combustion Science and Technology,2007,13(5):461-467.(in Chinese with English abstract)
    [6]Remón,J,Broust F,Valette J,et al.Production of a hydrogen-rich gas from fast pyrolysis bio-oils:Comparison between homogeneous and catalytic steam reforming routes[J].International Journal of Hydrogen Energy,2014,39(1):171-182.
    [7]Gao N B,Li A M,Quan C,et al.Characteristics of hydrogen-rich gas production of biomass gasification with porous ceramic reforming[J].International Journal of Hydrogen Energy,2012,37(12):9610-9618.
    [8]周劲松,刘亚军,骆仲泱,等.酸性、碱性催化剂对生物质焦油催化裂解影响分析[J].浙江大学学报:工学版,2005,39(7):1047-1051.Zhou Jingsong,Liu Yajun,Luo Zhongyang,et al.Effects of solid acid and alkali catalysts on catalytic cracking of biomass tar[J].Journal of Zhejiang University:Engineering Science,2005,39(7):1047-1051.(in Chinese with English abstract)
    [9]Corujo A,Yermán L,Arizaga B,et al.Improved yield parameters in catalytic steam gasification of forestry residue;optimizing biomass feed rate and catalyst type[J].Biomass and Bioenergy,2010,34(12):1695-1702.
    [10]Pinto F,Lopes H,AndréR N,et al.Effect of catalysts in the quality of syngas and by-products obtained by co-gasification of coal and wastes.1.tars and nitrogen compounds abatement[J].Fuel,2007,86(14):2052-2063.
    [11]Hurley S,Xu C,Preto F,et al.Catalytic gasification of woody biomass in an air-blown fluidized-bed reactor using Canadian limonite iron ore as the bed material[J].Fuel,2012,91(1):170-176.
    [12]Borah B J,Borah S J,Saikia K,et al.Efficient Suzuki-Miyaura coupling reaction in water:Stabilized Pdo-Montmorillonite clay composites catalyzed reaction[J].Applied Catalysis A:General,2014,469:350-356.
    [13]Occelli M L,Tindwa R M.Physicochemical properties of montmorillonite interlayered with cationic oxyaluminum pillars[J].Clays and Clay Minerals,1983,31(1):22-28.
    [14]Aldersley M F,Joshi P C.RNA dimer synthesis using montmorillonite as a catalyst:The role of surface layer charge[J].Applied Clay Science,2013,83/84:77-82.
    [15]李永玲,吴占松.生物质焦油催化裂解过程中酸性催化剂积碳失活与烧焦再生特性[J].中国电机工程学报,2014,34(8):1297-1303.Li Yongling,Wu Zhansong.Deactivation and burning regeneration of coked acid catalysts in catalytic cracking process of biomass tar[J].Journal of Chinese Electrical Engineering Science,2014,34(8):1297-1303.(in Chinese with English abstract)
    [16]牛永红,韩枫涛,李义科,等.松木成型燃料水蒸气气化反应特性[J].化工学报,2017,68(3):1191-1198.Niu Yonghong,Han Fengtao,Li Yike,et al.Steam gasification characteristic of pine briquette fuel[J].Journal of Chemical Industry and Engineering,2017,68(3):1191-1198.(in Chinese with English abstract)
    [17]牛永红,韩枫涛,陈义胜.高温蒸汽松木颗粒富氢气化试验[J].农业工程学报,2016,32(3):247-252.Niu Yonghong,Han Fengtao,Chen Yisheng.Experimental study of high-temperature steam gasification of pine particles for hydrogen-rich gas[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(3):247-252.(in Chinese with English abstract)
    [18]牛永红,韩枫涛,张雪峰,等.膨润土/褐铁矿改性白云石催化剂改善松木蒸汽富氢气化性能[J].农业工程学报,2017,33(7):213-219.Niu Yonghong,Han Fengtao,Zhang Xuefeng,et al.Performance improvement of steam gasification of pine for hydrogen-rich gas with dolomite catalyst modified by bentonite/limonite[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(7):213-219.(in Chinese with English abstract)
    [19]孙宁,应浩,徐卫,等.CaO对木屑水蒸气气化制取富氢燃气的影响[J].林产化学与工业,2017,37(2):141-147.Sun Ning,Ying Hao,Xu Wei,et al.Influence of CaO on hydrogen-rich gas production by steam gasification of sawdust[J].Chemistry and Industry of Forest Products,2017,37(2):141-147.(in Chinese with English abstract)
    [20]Roche E,de Andrés,Juan Manuel,Narros A,et al.Air and air-steam gasification of sewage sludge.The influence of dolomite and throughput in tar production and composition[J].Fuel,2014,115:54-61.
    [21]Berrueco C,MontanéD,Matas Güell B,et al.Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed[J].Energy,2014,66:849-859.
    [22]Mc Cabe R W,Trovarelli A.Forty years of catalysis by ceria:a success story[J].Applied Catalysis B:Environmental,2016,197:1-1.
    [23]贾立.生物质热解气白云石催化重整的试验研究[D].武汉:华中科技大学,2007.Jia Li.An Experimental Research on Reforming Pyrolyzation Gas With Dolomite[D].Wuhan:Huazhong University of Science and Technology,2007.(in Chinese with English abstract)
    [24]孙云娟.生物质与煤共热解气化行为特性及动力学研究[D].北京:中国林业科学研究院,2013.Sun Yunjuan.Study on the Charicteristic and Kinetic of Biomass and Coal Co-pyrolysis[D].Beijing:Chinese Academy of Forestry,2013.(in Chinese with English abstract)
    [25]张波.钙基添加剂强化生物质热解气化产氢特性及作用机制研究[D].重庆:重庆大学,2016.Zhang Bo.Characteristic and Mechanism Study of Enhanced Hydrogen Production by Ca-based Additive from Biomass Pyrolysis and Gasification[D].Chongqing:Chongqing University,2016.(in Chinese with English abstract)
    [26]Sun Y,Jiang J,Kantarelis E,et al.Development of a bimetallic dolomite based tar cracking catalyst[J].Catalysis Communications,2012,20:36-40.
    [27]Jumluck S,Kazuhi R O S,ThaRapong V,et al.A highly efficient catalyst for tar gasification with steam[J].Catal Commun,2005,6(6):437-440.
    [28]张文华.生物质焦油在半焦基催化剂下水蒸气重整的研究[D].大连:大连理工大学,2014.Zhang Wenhua.Catalytic Steam Reforming of Biomass Tar with Char-based Catalysts[D].Dalian:Dalian University of Technology,2014.(in Chinese with English abstract)
    [29]王铁军,常杰,吴创之,等.生物质焦油裂解催化剂制备及其催化裂解性能[J].煤炭转化,2003,26(1),89-93.Wang Tiejun,Chang Jie,Wu Chuangzhi,et al.Performance of catalytic cracking of biomass tar and catalyst preparation[J].Coal Conversion,2003,26(1),89-93.(in Chinese with English abstract)
    [30]Nam I S,Kittrell J R.Use of catalyst coke content in deactivation modeling[J].Industrial&Engineering Chemistry Process Design and Development,1984,23(2):237-242.
    [31]黄振,何方,李新爱,等.Fe基氧载体的生物质化学链气化过程热力学分析及试验研究[J].太阳能学报,2013,34(11):1943-1949.Huang Zhen,He Fang,Li Xinai,et al.Thermodynamic analysis and experimental investigation of chemical-looping gasification of biomass with fe-based oxygen carriers[J].Acta Energiae Solaris Sinica,2013,34(11):1943-1949.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700