锆合金表面射频磁控溅射SiC涂层制备工艺参数优选
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Process Parameter Optimization of SiC Coatings on Zirconium Alloy Surface by Radio Frequency Magnetron Sputtering
  • 作者:王晓婧 ; 刘艳红 ; 刘威 ; 李怀林
  • 英文作者:WANG Xiao-jing;LIU Yan-hong;LIU Wei;LI Huai-lin;State Power Investment Corporation Central Research Institute;School of Materials Science and Engineering,University of Science and Technology;
  • 关键词:射频磁控溅射 ; SiC涂层 ; 锆合金 ; 结合力 ; 高温水蒸气氧化
  • 英文关键词:radio frequency magnetron sputtering;;SiC coating;;zirconium alloys;;adhesion;;oxidation in high-temperature steam
  • 中文刊名:CLBH
  • 英文刊名:Materials Protection
  • 机构:国家电投集团中央研究院核燃料与材料研究所;北京科技大学材料科学与工程学院;
  • 出版日期:2018-04-15
  • 出版单位:材料保护
  • 年:2018
  • 期:v.51;No.471
  • 基金:国家科技重大专项子课题项目(2015ZX06004001-002)资助
  • 语种:中文;
  • 页:CLBH201804018
  • 页数:6
  • CN:04
  • ISSN:42-1215/TB
  • 分类号:81-86
摘要
目前,国内针对锆合金包壳涂层技术研究相对较少。通过射频磁控溅射方法在锆合金基体表面沉积Si C涂层,研究了溅射功率、基片加热温度和溅射时间对涂层形貌、结合力和厚度的影响,确定了最佳的工艺参数为溅射功率200 W,加热温度400℃,溅射时间6 h。采用扫描电镜(SEM)及能谱仪(EDS)、扫描成像X射线光电子能谱仪(XPS)和X射线衍射仪(XRD)对该工艺参数下制备的Si C涂层样品进行了成分分析。结果表明,所制备的涂层的主要成分为非晶Si C。对优化Si C涂层样品进行了初步的高温水蒸气氧化试验,证明其具备一定的抗氧化性,但还有待提高。
        The radio frequency magnetron sputtering method was employed to make Si C coatings on zirconium alloy surface. The influences of sputtering power,temperature of base metal and sputtering time on microstructure,adhesion and thickness of coatings were researched. The obtained optimized parameter was that the substrate temperature was as follows: temperature of 400 ℃,sputtering power of 200 W and sputtering time of 6 h. The structure of the prepared coating under optimized parameters was characterized by SEM,EDS,XPS and XRD.Results showed that the coating was composed of amorphous Si C. The oxidation experiment in high-temperature steam proved that the Si C coating increased the oxidation resistance of the zirconium alloys in a certain degree,which needed to be further improved.
引文
[1]YOUNKER I,FRATONI M.Neutronic evaluation of coating and cladding materials for accident tolerant fuels[J].Progress in Nuclear Energy,2016,88:10-18.
    [2]HUY L D,LAFFEZ P,DANIEL P,et al.Structure and phase component of Zr O2thin films studied by Raman spectroscopy and X-ray diffraction[J].Materials Science and Engineering B,2003,104:163-168.
    [3]PARK J H,KIM H G,PARK J Y,et al.High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J].Surface and Coatings Technology,2015,280:256-259.
    [4]SICKAFUS K.Ceramic Coatings for Clad(The C3 Project):Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding[R].Knoxville:United States Department of Energy,2012.
    [5]CHENG B,KIM Y J,CHOU P.Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding[J].Nuclear Engineering and Technology,2016,48:16-25.
    [6]BRACHET J C,SAUX M L,FLEM M L,et al.On-Going Studies at CEA on Chromium Coated Zirconium Based Nuclear Fuel Claddings for Enhanced Accident Tolerant LWRS Fuel[R].Paris:The French Atomic Energy Commission,2015.
    [7]LEE K S,LEE S H,KALITA D J,et al.Vanadium as barrier to Prevent Inter-diffusion between Metallic Fuel and Clad Material[J].Transactions of the Korean Nuclear Society Autumn Meeting Gyeongju,2012,10:25-26.
    [8]KIM J H,RYU H J,BAEK J H,et al.Performance of a diffusion barrier under a fuel-clad chemical interaction(FCCI)[J].Journal of Nuclear Materials,2009,394:144-150.
    [9]范洪远,向文欣,李伟,等.膜厚对溅射铬膜与锆合金基体附着性的影响[J].核动力工程,2003,24(3):245-248.
    [10]XUE W B,ZHU Q Z,JIN Q,et al.Characterization of ceramic coatings fabricated on zirconium alloy by plasm a electrolytic oxidation in silicate electrolyte[J].Materials Chemistry and Physics,2010,120:656-660.
    [11]CHENG Y L,MATYKINA E,SKELDON P,et al.Characterization of plasma electrolytic oxidation coatings on Zircaloy-4 formed in different electrolytes with AC current regime[J].Electrochimica Acta,2011,56:8 467-8 476.
    [12]CHENG Y,MATYKINA E,ARRABAL R,et al.Plasma electrolytic oxidation and corrosion protection of Zircaloy-4[J].Surface and Coatings Technology,2012,206:3 230-3 239.
    [13]陈晖,周细应,孙卿.磁控溅射Si C薄膜表面形貌演化行为研究[J].金刚石与磨料磨具工程,2011,31(4):32-36.
    [14]WAHAB Q,SARDELA M R,HULTMAN L,et al.Growth of high-quality 3C-Si C epitaxial films on off-axis Si(001)substrates at 850℃by reactive magnetron sputtering[J].Applied Physics Letters,1994,65(6):725-727.
    [15]RAJAB S M,OLIVEIRA I C,MASSI M,et al.Effect of the thermal annealing on the electrical and physical properties of Si C thin films produced by RF magnetron sputtering[J].Thin Solid Films,2006,515(1):170-175.
    [16]COLDER H,RIZK R,MORALES M,et al.Influence of substrate temperature on growth of nanocrystalline silicon carbide by reactive magnetron sputtering[J].Journal of Applied Physics,2005,98(2):1 455-1 465.
    [17]谢致薇,蒙继龙,王国庆.物理气相沉积薄膜的界面与附着力[J].真空科学与技术学报,2001,21(3):203-209.
    [18]谈淑咏,吴湘君,张旭海,等.层厚比对磁控溅射Cr/Cr N多层涂层组织和性能的影响[J].材料工程,2014(11):28-33.
    [19]AL-OLAYYAN Y,FUCHS G E,BANEY R,et al.The effect of Zircaloy-4 substrate surface condition on the adhesion strength and corrosion of Si C coatings[J].Journal of Nuclear Materials,2005,346(2):109-119.
    [20]汤海鹏,王英华,田民波,等.溅射Si C薄膜的XPS分析[J].材料研究学报,1989,3(3):245-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700