质子交换膜燃料电池带载吹扫仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Purge Simulation with Load of Proton Exchange Membrane Fuel Cell
  • 作者:肖成乾 ; 高源 ; 章桐
  • 英文作者:Xiao Chengqian;Gao Yuan;Zhang Tong;School of Automotive Studies, Tongji University;
  • 关键词:质子交换膜燃料电池 ; 带载吹扫 ; 水含量
  • 英文关键词:Proton exchange membrane fuel cell;;Purge with load;;Water content
  • 中文刊名:QCJS
  • 英文刊名:Automobile Technology
  • 机构:同济大学汽车学院;
  • 出版日期:2019-01-24
  • 出版单位:汽车技术
  • 年:2019
  • 期:No.520
  • 基金:国家自然科学基金项目(21506165)
  • 语种:中文;
  • 页:QCJS201901004
  • 页数:5
  • CN:01
  • ISSN:22-1113/U
  • 分类号:17-21
摘要
为解决车载燃料电池停机后因气道中残留氢气而在一段时间内维持开路电压状态的问题,基于GAMBIT建立了燃料电池三维模型,利用FLUENT对其进行带载吹扫仿真。仿真结果表明,燃料电池的水分布集中在其后半部分,且含水量随吹扫流量和时间的增加而减小;在吹扫流量达到正常进气流量量级的情况下,前30 s的吹扫除水效率最高;第30~80 s的吹扫效率稍微下降,但保证了更好的吹扫效果;在吹扫时间和吹扫流量有一定效果的情况下,吹扫时间对除水效果的影响大于吹扫流量。
        After the vehicle-mounted fuel cell shuts down, the hydrogen gas remains in the air passage. As a result,open circuit voltage maintains at the fuel cell for a period of time after the shutdown. To solve this problem, a threedimensional model of the fuel cell was established based on GAMBIT. Then the purge simulation with load of the fuel cell was carried out through FLUENT. The simulation results show that the water distribution of the fuel cell is concentrated in the latter half of the fuel cell, and the water content of the battery decreases with the increase of purge flow and purge time.When the purge flow reaches the normal inlet flow rate, the purging efficiency is the highest in the first 30 s; while slightly decreases in the period from the 30 th second to the 80 th second, but a better purging effect is ensured. When the purge time and the purge flow achieve a certain purge effect, the purge time has a greater effect on the dewatering effect than the purge flow.
引文
[1]王勇,邱宜彬,刘志祥.联合辅助负载和N2吹扫停机策略的实验研究[J].太阳能学报, 2017(11):3043-3048.
    [2] Bradean R, Haas H, Desousa A, et al. Models for Predicting MEA Water Content During Fuel Cell Operation and After Shutdown[J], 2005.
    [3] Sinha P K, Wang C Y. Gas Purge in a Polymer Electrolyte Fuel Cell[J]. Journal of the Electrochemical Society, 2007,154(11):B1158-B1166.
    [4] Sinha P K, Wang C Y, Sinha P K, et al. Two-Phase Modeling of Gas Purge in a Polymer Electrolyte Fuel Cell[J].Journal of Power Sources, 2008, 183(2):609-618.
    [5] Basu S, Li J, Wang C Y. Two-Phase Flow and Maldistribution in Gas Channels of a Polymer Electrolyte Fuel Cell[J]. Journal of Power Sources, 2009, 187(2):431-443.
    [6]许澎,高源,许思传.质子交换膜燃料电池停机后吹扫仿真[J].同济大学学报(自然科学版), 2017, 45(12):1873-1878.
    [7] Tajiri K, Tabuchi Y, Kagami F, et al. Effects of Operating and Design Parameters on PEFC Cold Start[J]. Journal of Power Sources, 2007, 165(1):279-286.
    [8] Tajiri K, Wang C Y, Tabuchi Y. Water Removal from a PEFC During Gas Purge[J]. Electrochimica Acta, 2008, 53(22):6337-6343.
    [9]刘威.质子交换膜燃料电池吹扫除水与低温冷启动研究[D].武汉:武汉理工大学, 2009.
    [10]罗马吉,王芳芳,刘威,等.二次吹扫条件下的PEMFC冷启动实验[J].华中科技大学学报(自然科学版), 2011(6):116-120.
    [11] Kim S I, Lee N W, Kim Y S, et al. Effective Purge Method with Addition of Hydrogen on the Cathode Side for Cold Start in PEM Fuel Cell[J]. International Journal of Hydrogen Energy, 2013, 38(26):11357-11369.
    [12] Mazumder S, Mazumder S, Cole J V, et al. Rigorous 3-D Mathematical Modeling of PEM Fuel Cells I. Model Predictions without Liquid Water Transport[J]. Journal of the Electrochemical Society, 2003, 150(11):A1503-A1509.
    [13] Kulikovsky A A, Divisek J, Kornyshev A A. Modeling the Cathode Compartment of Polymer Electrolyte Fuel Cells:Dead and Active Reaction Zones[J]. Journal of the Electrochemical Society, 1999, 146(11):3981-3991.
    [14] Um S, Wang C Y, Chen K S. Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells[J]. Journal of the Electrochemical Society, 2000, 147(12):4485-4507.
    [15] Jin H N, Kaviany M. Effective Diffusivity and WaterSaturation Distribution in Single-and Two-Layer PEMFC Diffusion Medium[J]. International Journal of Heat&Mass Transfer, 2003, 46(24):4595-4611.
    [16] Nguyen T V. Modeling Two-Phase Flow in the Porous Electrodes of Proton Exchange Membrane Fuel Cells using the Interdigitated Flow Fields[J]. Tutorials in Electrochemical Engineering Mathematical Modeling,1999, 99(14):222-241.
    [17] Tajiri K, Wang C Y. Cold Start of Polymer Electrolyte Fuel Cells[J]. Electrochimica Acta, 2010, 55(8):2636.
    [18] Borup R, Davey J, Garzon F, et al. PEM Fuel Cell Durability with Transportation Transient Operation[J]. ECS Transactions, 2006, 3(1):6773-6779.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700