饮用水中双氯芬酸钠的电化学膜滤法去除工艺
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Technological Process of Diclofenac Sodium Removal in Drinking Water by Electrochemical Membrane Filtration(EMF)
  • 作者:孙继成 ; 胡维杰 ; 曹晶 ; 王志伟 ; 吴志超 ; 王巧英
  • 英文作者:SUN Jicheng;HU Weijie;CAO Jing;WANG Zhiwei;WU Zhichao;WANG Qiaoying;State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University;Shanghai Municipal Engineering Design Institute Co., Ltd.;
  • 关键词:电化学膜滤法 ; 双氯芬酸钠 ; 饮用水 ; 运行方式 ; 能耗
  • 英文关键词:electrochemical membrane filtration(EMF);;diclofenac sodium(DCFNa);;drinking water;;operation mode;;energy consumption
  • 中文刊名:ZSJS
  • 英文刊名:Water Purification Technology
  • 机构:同济大学环境科学与工程学院上海污染控制与生态安全研究院污染控制与资源化研究国家重点实验室;上海市政工程设计研究总院<集团>有限公司第三设计院;
  • 出版日期:2019-02-25
  • 出版单位:净水技术
  • 年:2019
  • 期:v.38;No.202
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07201005)
  • 语种:中文;
  • 页:ZSJS201902011
  • 页数:8
  • CN:02
  • ISSN:31-1513/TQ
  • 分类号:54-61
摘要
采用电化学膜滤法(EMF)对饮用水中的有机微污染物——双氯芬酸钠(DCFNa)进行去除,考察了外加电压、初始浓度对EMF去除饮用水中DCFNa的影响。研究结果表明:EMF对DCFNa的去除以间接氧化作用为主,反应过程中生成了大量的活性氧化物质(ROS)物质;在批次试验条件下,其降解过程符合伪一级反应动力学模型,随着外加电压的增大,其降解速率增大,而在低初始浓度条件(0.1~2.0 mg/L)下,初始浓度对EMF去除DCFNa的影响较小,当初始浓度增加至10 mg/L时,降解效果出现下降趋势。研究进一步考察了不同运行方式及膜通量对EMF去除DCFNa效果的影响。结果表明,在不同的运行方式条件下,循环流优于批次试验优于连续流,且EMF对DCFNa的去除率随着膜通量的增加而降低。在初始电压为2.5 V、膜通量为30 L/(m~2·h)时,连续流试验4 h后,DCFNa的去除率达到89.2%。
        Electrochemical membrane filtration(EMF) process was used for the removal of diclofenac sodium(DCFNa) in drinking water. The effects of applied voltage and initial concentration on DCFNa removal from drinking water were investigated. The results showed that the removal of DCFNa by EMF process was owe to the indirect oxidation, and a large amount of reactive oxygen species(ROS) was generated in the process. In batch experiments, degradation process fit well with a pseudo first-order kinetics model, and with the increase of applied voltage, the degradation rate increased. When initial concentration was low(0.1~2.0 mg/L), initial DCFNa concentration showed insignificant effects on DCFNa removal by EMF process. However, when initial concentration increased to 10 mg/L, the degradation ratio declined. The effect of different operation modes on the removal of DCFNa by EMF were furtherly investigated. The results showed that the degradation efficiency of circulation flow mode was higher than that of batch experiments and continuous flow mode. The results of membrane flux experiments showed that the removal rate of DCFNa decreased with the increase of membrane flux. When applied voltage was 2.5 V with membrane flux of 30 L/(m~2·h), DCFNa removal rate reached 89.2% after 4 h reaction by continuous flow mode.
引文
[1] SUN Q, LI Y, LI M, et al. PPCPs in Jiulong River estuary (China): Spatiotemporal distributions, fate, and their use as chemical markers of wastewater[J]. Chemosphere, 2016, 150: 596-604.
    [2] ALQAIM F F, ABDULLAH M P, OTHMAN M R, et al. A validation method development for simultaneous LC-ESI-TOF/MS analysis of some pharmaceuticals in Tangkas River-Malaysia[J]. Journal of the Brazilian Chemical Society, 2014, 25(2): 271-281.
    [3] TIXIER C, SINGER H P, OELLERS S, et al. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters[J]. Environmental Science & Technology, 2003, 37(6): 1061-1068.
    [4] WESTERHOFF P, YOON Y, SNYDER S, et al. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes[J]. Environmental Science and Technology, 2005, 39(17): 6649-6663.
    [5] VIENO N, H?RKKI H, TUHKANEN T, et al. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment Plant[J]. Environmental Science and Technology, 2007, 41(14): 5077-5584.
    [6] VULLIET E, CREN-OLIVé C, GRENIER-LOUSTALOT M F. Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters[J]. Environmental Chemistry Letters, 2011, 9(1): 103-114.
    [7] RABIET M, TOGOLA A, BRISSAUD F, et al. Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment[J]. Environmental Science & Technology, 2006, 40(17): 5282-5288.
    [8] VOGNA D, MAROTTA R, NAPOLITANO A, et al. Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone[J]. Water Research, 2004, 38(2): 414-422.
    [9] POCOSTALES P, LVAREZ P, BELTRáN F J. Catalytic ozonation promoted by alumina-based catalysts for the removal of some pharmaceutical compounds from water[J]. Chemical Engineering Journal, 2011, 168(3): 1289-1295.
    [10] YANG J F, ZHOU S B, XIAO A G, et al. Chemical oxidation of sulfadiazine by the Fenton process: Kinetics, pathways, toxicity evaluation[J]. Journal of Environmental Science and Health, 2014, 49(12): 909-916.
    [11] 林国峰, 任峰, 孙军益, 等. 热激活过硫酸盐降解水中双氯芬酸钠机理[J]. 净水技术, 2017, 36(s2): 93-96,144.
    [12] 郑红涛. 修饰碳纳米管电极降解废水中PPCPs的研究[D].北京:北京化工大学, 2011:45-50.
    [13] ZHAO X, HOU Y, LIU H, et al. Electro-oxidation of diclofenac at boron doped diamond: Kinetics and mechanism[J]. Electrochimica Acta, 2009, 54(17): 4172-4179.
    [14] MUSSA Z H, AL-QAIM F F, OTHMAN M R, et al. Pseudo first order kinetics and proposed transformation products pathway for the degradation of diclofenac using graphite-PVC composite as anode[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 9(2): 37-44.
    [15] ZHAO F, LIU L, YANG F, et al. E-Fenton degradation of MB during filtration with Gr/PPy modified membrane cathode[J]. Chemical Engineering Journal, 2013, 18(16): 491-498.
    [16] ZHENG J, MA J, WANG Z, et al. Contaminant removal from source waters using cathodic electrochemical membrane filtration: Mechanisms and implications[J]. Environmental Science and Technology, 2017, 51(5): 2757-2765.
    [17] HUANG J, WANG Z, ZHANG J, et al. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors[J]. Scientific Reports, 2015, 5: 9268.
    [18] HAN X, WANG Z, CHEN M, et al. Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: Protective mechanisms of extracellular polymeric substances[J]. Environmental Science & Technology, 2017, 51(6): 3233-3241.
    [19] BRILLAS E, MARTíNEZ-HUITLE C A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: An updated review[J]. Applied Catalysis B: Environmental, 2015, 166-167(Supplement C): 603-643.
    [20] 庄淑婷, 徐冰, 刘博, 等. 基于静电纺丝膜的Fenton法降解双氯芬酸钠[J]. 环境工程学报, 2016, 10(9): 4895-4901.
    [21] CHONG S, ZHANG G, ZHANG N, et al. Diclofenac degradation in water by FeCeOx catalyzed H2O2: Influencing factors, mechanism and pathways[J]. Journal of Hazardous Materials, 2017, 43(14): 150-159.
    [22] 于万禄, 熊振湖, 马华继. Photo-Fenton法降解水中新型污染物双氯芬酸及降解产物的毒性评价[J]. 环境科学学报, 2009, 29(10): 2070-2075.
    [23] HMANI E, SAMET Y, ABDELHéDI R. Electrochemical degradation of auramine-O dye at boron-doped diamond and lead dioxide electrodes[J]. Diamond and Related Materials, 2012, 22(6): 1-8.
    [24] 孙继成, 吴志超, 王志伟, 等. 电化学耦合膜工艺去除饮用水中卡马西平[J]. 中国环境科学, 2018 (1): 193-201.
    [25] YANG S, CHE D. Degradation of aquatic sulfadiazine by Fe0/persulfate: Kinetics, mechanisms, and degradation pathway[J]. Rsc Advances, 2017, 7(67): 42233-42241.
    [26] BAE S, KIM D, LEE W. Degradation of diclofenac by pyrite catalyzed Fenton oxidation[J]. Applied Catalysis B: Environmental, 2013, 134-135(9): 93-102.
    [27] 何磊, 王志伟, 吴志超, 等. 不同膜通量下MBR处理餐饮废水的研究[J]. 中国给水排水, 2010 (17): 57-61.
    [28] BROCENSCHI R F, ROCHA-FILHO R C, BOCCHI N, et al. Electrochemical degradation of estrone using a boron-doped diamond anode in a filter-press reactor[J]. Electrochimica Acta, 2016, 197: 186-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700