动态力学分析技术在木材科学研究领域的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of dynamic mechanical analysis in wood science research
  • 作者:吕建雄 ; 彭辉 ; 曹金珍 ; 蒋佳荔 ; 赵荣军 ; 高玉磊
  • 英文作者:LYU Jianxiong;PENG Hui;CAO Jinzhen;JIANG Jiali;ZHAO Rongjun;GAO Yulei;Key Laboratory of Wood Science and Technology of State Forestry Administration,Chinese Academy of Forestry;Hunan Collaborative Innovation Center for Effective Utilizing of Wood & Bamboo Resources,Central South University of Forestry and Technology;College of Materials Science and Technology,Beijing Forestry University;
  • 关键词:动态力学分析技术 ; 实体木材 ; 木质复合材料 ; 木材科学
  • 英文关键词:dynamic mechanical analysis;;solid wood;;wood-based material;;wood science
  • 中文刊名:LKKF
  • 英文刊名:Journal of Forestry Engineering
  • 机构:中国林业科学研究院木材工业研究所国家林业局木材科学与技术重点实验室;"木竹资源高效利用"湖南省高校2011协同创新中心中南林业科技大学;北京林业大学材料科学与技术学院;
  • 出版日期:2018-09-27 14:18
  • 出版单位:林业工程学报
  • 年:2018
  • 期:v.3;No.17
  • 基金:国家重点研发计划项目(2017YFD0600202);; 木竹资源高效利用湖南省高校2011协同创新中心项目
  • 语种:中文;
  • 页:LKKF201805004
  • 页数:11
  • CN:05
  • ISSN:32-1862/S
  • 分类号:11-21
摘要
动态力学分析技术(DMA)通过材料的结构和分子运动状态表征材料的力学性能。木质材料的力学性能本质上是分子运动状态的反映,利用DMA可以架构其结构与性能之间的关系,获得木质材料的结构、分子运动及其转变等重要信息。分别总结了DMA在实体木材和木质复合材料中的应用:围绕实体木材,综合评述了DMA在分析木材材性、软化行为、机械吸湿效应以及早期腐朽程度方面所取得的研究进展;针对木质复合材料,重点介绍了DMA在分析其阻尼性能、胶合性能、界面相容性能和耐老化性能等方面的应用。建议今后的研究重点从以下3个方面展开:1)考虑到实体木材自身组织结构的复杂性以及易受环境影响等特点,采用DMA分析仪不同的载荷类型和形变模式进行组合测试,在一定温湿度场中系统研究实体木材的材性与软化行为和机械吸湿效应的关系。2)利用DMA分析仪的单纤维拉伸模式,探索单根纤维(管胞、木纤维细胞)的黏弹行为,进一步明晰木质材料微观黏弹性能的响应机制。3)联用振动光谱(红外光谱或拉曼光谱),实现同步实时观察木质材料形变过程中组成分子的化学键或官能团的变化及响应,进而从分子水平揭示木质材料的形变规律。
        Dynamic mechanical analysis( DMA) is a useful thermo-mechanical analysis technique for studying the elastic and viscoelastic behavior of polymers under a static or dynamic force as a function of time or temperature. The DMA provides the opportunity to examine composite properties and the response of individual wood components in situ,and furthers the understanding of the contributions made by individual wood polymers,as well as their interaction. The DMA can be simply described as an oscillating force to a sample and analyzing the material's response to that force,which contains information of sample stiffness( storage modulus E') and damping property( loss modulus E″ and damping factor tan δ). A wide range of fixtures or jigs are available,which allows that samples can be tested in various shapes and forms. These include tension,flexure,compression and shear. The DMA is also possible to observe the response of wood to moisture conditions because it can adjust temperature and humidity of ambient condition. This paper reviewed the applications of DMA on solid wood and wood-based materials,respectively. For solid wood,the emphases were on the wood properties,softening behavior,mechano-sorptive effect and initial decay process. For wood-based materials,the emphases were on damping property,adhesion strength,interfacial interaction and ageing-resistant performance. In the future,the following three research topics were suggested: 1) To use DMA instruments combined with loading directions and deformation modes at a certain temperature and humidity field to clarify wood properties,softening behavior and mechano sorptive effect by considering anatomic characteristics of wood and moisture dependence behavior. 2) To investigate the viscoelastic behavior of single wood fiber,which is essential to illuminate the wood mechanical behavior. 3) To investigate the deformation of molecular bonds or functional groups under loading using the Fourier transform infrared or Raman spectroscopy to reveal the evolution of wooden material's deformation at molecular level.
引文
[1]HAVIMO M.A literature-based study on the loss tangent of wood in connection with mechanical pulping[J].Wood Science and Technology,2009,43(7/8):627-642.
    [2]HAZARIKA A,MANDAL M,MAJI T K.Dynamic mechanical analysis,biodegradability and thermal stability of wood polymer nanocomposites[J].Composites Part B:Engineering,2014,60:568-576.
    [3]JOHN MJ,FRANCIS B,THOMAS S,et al.Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites[J].Polymer Composites,2006,27(6):671-680.
    [4]JIN F Y,JIANG Z H,WU Q L.Creep behavior of wood plasticized by moisture and temperature[J].Bio Resources,2016,11(1):827-838.
    [5]RIALS T G,GLASSER W G.Characterizing wood components as network polymers by dynamic mechanical analysis[J].Wood and Fiber Science,1984,16(4):537-542.
    [6]过梅丽,陈金凤.美国热分析仪器公司(TA Instruments)动态力学分析仪(DMA 2980)[J].现代科学仪器,1996(3):55-58.
    [7]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002.
    [8]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2000.
    [9]胡少强.DMA983型动态力学分析仪的应用[J].黎明化工,1996(3):26-28.
    [10]蒋佳荔,吕建雄.木材动态粘弹性的含水率依存性[J].北京林业大学学报,2006,28(增刊2):118-123.JIANG J L,LYU J X.Moisture dependence of the dynamic viscoelastic properties for wood[J].Journal of Beijing Forestry University,2006,28(Supp.2):118-123.
    [11]蒋佳荔,吕建雄.杉木动态黏弹行为的时温等效性[J].林业科学,2012,48(2):124-128.JIANG J L,LYU J X.Time-temperature superposition in the Chinese fir dynamic viscoelastic behavior response[J].Scientia Silvae Sinicae,2012,48(2):124-128.
    [12]吕建雄,蒋佳荔.木材动态黏弹性基础研究[M].北京:科学出版社,2015.
    [13]彭辉,蒋佳荔,詹天翼,等.木材普通蠕变和机械吸湿蠕变研究概述[J].林业科学,2016,52(4):116-126.PENG H,JIANG J L,ZHAN T Y,et al.A reviewof pure viscoelastic creep and mechano-sorptive creep of wood[J].Scientia Silvae Sinicae,2016,52(4):116-126.
    [14]SHARMA M,BRENNAN M,CHAUHAN S S,et al.Wood quality assessment of Pinus radiata(radiata pine)saplings by dynamic mechanical analysis[J].Wood Science and Technology,2015,49(6):1239-1250.
    [15]ORMONDROYD G A,ALFREDSEN G,PRABHAKARAN R T D,et al.Assessment of the use of dynamic mechanical analysis to investigate initial onset of brown rot decay of Scots pine(Pinus sylvestris L.)[J].International Biodeterioration&Biodegradation,2017,120:1-5.
    [16]李小燕,李娜娜,李穗奕,等.竹炭粉/丁苯橡胶/超高分子量聚乙烯柔性复合材料的制备与性能表征[J].林业工程学报,2016,1(4):102-106.LI X Y,LI N N,LI S Y,et al.Preparation and characterization of the flexible composites blended with bamboo charcoal powder/styrene-butadiene rubber/ultrahigh molecular weight polytheylene[J].Journal of Forestry Engineering,2016,1(4):102-106.
    [17]徐凤娇,郝笑龙,聂兰平,等.抗静电剂对木粉/PVC复合材料性能的影响[J].林业工程学报,2016,1(5):45-51.XU F J,HAO X L,NIE L P,et al.The effect of antistatic agent on the properties of wood flour/PVC composite[J].Journal of Forestry Engineering,2016,1(5):45-51.
    [18]LYU S S,GU J Y,TAN H Y,et al.The morphology,rheological,and mechanical properties of wood flour/starch/poly(lactic acid)blends[J].Journal of Applied Polymer Science,2017,134(16).
    [19]KELLEY S S,RIALS T G,GLASSER W G.Relaxation behaviour of the amorphous components of wood[J].Journal of Materials Science,1987,22(2):617-624.
    [20]OBATAYA E,NORIMOTO M,TOMITA B.Mechanical relaxation processes of wood in the low-temperature range[J].Journal of Applied Polymer Science,2001,81(13):3338-3347.
    [21]BECKER H,NOACK D.Studies on dynamic torsional viscoelasticity of wood[J].Wood Science and Technology,1968,2(3):213-230.
    [22]PENG H,LU J X,JIANG J L,et al.Longitudinal mechanosorptive creep behavior of Chinese fir in tension during moisture adsorption processes[J].Materials,2017,10(8):931.
    [23]SUN N J,FRAZIER C E.Time/temperature equivalence in the dry wood creep response[J].Holzforschung,2007,61(6):702-706.
    [24]KABOORANI A,BLANCHET P,LAGHDIR A.A rapid method to assess viscoelastic and mechanosorptive creep in wood[J].Wood and Fiber Science,2013,45(4):370-382.
    [25]KABOORANI A,BLANCHET P.Determining the linear viscoelastic region of sugar maple wood by dynamic mechanical analysis[J].Bio Resources,2014,9(3):4392-4409.
    [26]GAO H.Dynamic mechanical analysis of wood and wood-based composites[D].Corvallis:Oregon State University,1994.
    [27]BIRKINSHAW C,BUGGY M,HENN G G.Dynamic mechanical analysis of wood[J].Journal of Materials Science Letters,1986,5(9):898-900.
    [28]SADOH T.Viscoelastic properties of wood in swelling systems[J].Wood Science&Technology,1981,15(1):57-66.
    [29]SALMEN L.Viscoelastic properties of in situ lignin under watersaturated conditions[J].Journal of Materials Science,1984,19(9):3090-3096.
    [30]SELLEVOLD E J,RADJY F,HOFFMEYER P,et al.Low temperature internal friction and dynamic modulus for beech wood[J].Wood and Fiber,1975,7(3):162-169.
    [31]SALMEN L.Temperature and water induced softening behaviour of wood fiber based materials[Z].Stockholm:The Royal Institute of Technology,1982.
    [32]Mc CARTHY C,BIRKINSHAW C,PEMBROKE J T,et al.Dynamic mechanical analysis as a technique for the study of fungal degradation of wood[J].Biotechnology Techniques,1991,5(6):493-496.
    [33]DONG F,OLSSON A M,SALMEN L.Fibre morphological effects on mechano-sorptive creep[J].Wood Science and Technology,2010,44(3):475-483.
    [34]OLSSON A M,SALMEN L.Mechano-sorptive creep in pulp fibres and paper[J].Wood Science and Technology,2014,48(3):569-580.
    [35]OLSSON A M,SALMEN L,EDER M,et al.Mechano-sorptive creep in wood fibres[J].Wood Science and Technology,2007,41(1):59-67.
    [36]ZHAN T Y,JIANG J L,LU J X,et al.Dynamic viscoelastic properties of Chinese fir under cyclical relative humidity variation[J].Journal of Wood Science,2015,61(5):465-473.
    [37]ZHAN T Y,JIANG J L,PENG H,et al.Evidence of mechanosorptive effect during moisture adsorption process under hygrothermal conditions:characterized by static and dynamic loadings[J].Thermochimica Acta,2016,633:91-97.
    [38]ZHAN T Y,JIANG J L,PENG H,et al.Dynamic viscoelastic properties of Chinese fir(Cunninghamia lanceolata)during moisture desorption processes[J].Holzforschung,2015,70(6):547-555.
    [39]ZHAN T Y,LU J X,JIANG J L,et al.Viscoelastic properties of the Chinese fir(Cunninghamia lanceolata)during moisture sorption processes determined by harmonic tests[J].Materials,2016,9(12):1020.
    [40]JIANG J L,LU J X.Impact of temperature on the linear viscoelastic region of wood[J].Canadian Journal of Forest Research,2009,39(11):2092-2099.
    [41]BREMAUD I,el KAIMY,GUIBAL D,et al.Characterisation and categorisation of the diversity in viscoelastic vibrational properties between 98 wood types[J].Annals of Forest Science,2012,69(3):373-386.
    [42]PLACET V,PASSARD J,PERREP.Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0\degree C to 95\degree C:hardwood vs.softwood and normal wood vs.reaction wood[J].Holzforschung,2007,61(5):548-557.
    [43]PLACET V,PASSARD J,PERREP.Viscoelastic properties of wood across the grain measured under water-saturated conditions up to 135℃:evidence of thermal degradation[J].Journal of Materials Science,2008,43(9):3210-3217.
    [44]ENGELUND E T,SALMN L.Tensile creep and recovery of Norway spruce influenced by temperature and moisture[J].Holzforschung,2012,66(8):959-965.
    [45]HERING S,NIEMZ P.Moisture-dependent,viscoelastic creep of European beech wood in longitudinal direction[J].European Journal of Wood and Wood products,2012,70(5):667-670.
    [46]YIN Y F,BERGLUND L,SALMEN L.Effect of steam treatment on the properties of wood cell walls[J].Biomacromolecules,2011,12(1):194-202.
    [47]SALMEN L.Micromechanical understanding of the cell-wall structure[J].Comptes Rendus Biologies,2004,327(9/10):873-880.
    [48]AKERHOLMM,SALMEN L.The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy[J].Holzforschung,2003,57(5):459-465.
    [49]SONG K L,YIN Y F,SALMEN L,et al.Changes in the properties of wood cell walls during the transformation from sapwood to heartwood[J].Journal of Materials Science,2014,49(4):1734-1742.
    [50]BACKMAN A C,LINDBERG K A H.Differences in wood material responses for radial and tangential direction as measured by dynamic mechanical thermal analysis[J].Journal of Materials Science,2001,36(15):3777-3783.
    [51]JIANG J L,LU J X.Anisotropic characteristics of wood dynamic viscoelastic properties[J].Forest Products Journal,2009,59(7/8):59-64.
    [52]SALMEN L,STEVANIC J S,OLSSON A M.Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis(DMA)[J].Holzforschung,2016,70(12):1155-1163.
    [53]LI Z,JIANG J L,LU J X.Moisture-dependent orthotropic viscoelastic properties of Chinese fir wood in low temperature environment[J].Journal of Wood Science,2018,doi:10.1007/S10086-018-1738-4.
    [54]FURUTA Y,OKUYAMA T,KOJIRO K,et al.Temperature dependence of the dynamic viscoelasticity of bases of Japanese cypress branches and the trunk close to the branches saturated with water[J].Journal of Wood Science,2014,60(4):249-254.
    [55]SKAAR C.Wood-water relations[M].Berlin:Springer Verlag,1988.
    [56]HILL C A S,KEATING B A,JALALUDIN Z,et al.A rheological description of the water vapour sorption kinetics behaviour of wood invoking a model using a canonical assembly of Kelvin-Voigt elements and a possible link with sorption hysteresis[J].Holzforschung,2012,66(1):35-47.
    [57]HILL C A S,NORTON A,NEWMAN G.The water vapor sorption behavior of natural fibers[J].Journal of Applied Polymer Science,2009,112(3):1524-1537.
    [58]HILL C A S,NORTON A,NEWMAN G.Analysis of the water vapour sorption behaviour of Sitka spruce[Picea sitchensis(Bongard)Carr.]based on the parallel exponential kinetics model[J].Holzforschung,2010,64(4):469-473.
    [59]HILL C A S,NORTON A J,NEWMAN G.The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus[J].Wood Science and Technology,2010,44(3):497-514.
    [60]ZHAN T Y,JIANG J L,LU J X.The viscoelastic properties of Chinese fir during water-loss process under hydrothermal conditions[J].Drying Technology,2015,33(14):1739-1745.
    [61]ENGELUND E T,SVENSSON S.Modelling time-dependent mechanical behaviour of softwood using deformation kinetics[J].Holzforschung,2011,65(2):231-237.
    [62]GUICHERET-RETEL V,CISSE O,PLACET V,et al.Creep behaviour of single hemp fibres.Part II:influence of loading level,moisture content and moisture variation[J].Journal of Materials Science,2015,50(5):2061-2072.
    [63]ARMSTRONG L D,CHRISTENSEN G N.Influence of moisture changes on deformation of wood under stress[J].Nature,1961,191(4791):869-870.
    [64]SALMEN L,OLSSON A M.Physical properties of cellulosic materials related to moisture changes[J].Wood Science and Technology,2016,50(1):81-89.
    [65]詹天翼,蒋佳荔,彭辉,等.水分吸着过程中杉木黏弹行为的经时变化规律及其频率依存性[J].林业科学,2016,52(8):96-103.ZHAN T Y,JIANG J L,PENG H,et al.Changes of time dependent viscoelasticity of Chinese fir and its frequencydependency during moisture adsorption processes[J].Scientia Silvae Sinicae,2016,52(8):96-103.
    [66]詹天翼,吕建雄,张海洋,等.水分解吸过程中杉木黏弹行为的经时变化规律及其频率依存性[J].林业科学,2017,53(8):155-162.ZHANT Y,LYU J X,ZHANG H Y,et al.Changes of time dependent viscoelasticity of Chinese fir wood and its frequency-dependency during moisture desorption processes[J].Scientia Silvae Sinicae,2017,53(8):155-162.
    [67]ZHAN T Y,JIANG J L,LU J X,et al.Influence of hygrothermal condition on dynamic viscoelasticity of Chinese fir(Cunninghamia lanceolata).Part 1:moisture adsorption[J].Holzforschung,2018,72(7):567-578.
    [68]ZHAN T Y,JIANG J L,LU J X,et al.Influence of hygrothermal condition on dynamic viscoelasticity of Chinese fir(Cunninghamia lanceolata).Part 2:moisture desorption[J].Holzforschung,2018,72(7):579-588.
    [69]MONRROY M,ORTEGA I,RAMIREZ M,et al.Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis[J].Enzyme and Microbial Technology,2011,49(5):472-477.
    [70]CURLING S F,CLAUSEN C A,WINANDY J E.Relationships between mechanical properties,weight loss,and chemical composition of wood during incipient brown-rot decay[J].Forest Products Journal,2002,52(7/8):34-39.
    [71]KUBAT J,RIGDAHL M,WELANDER M.Characterization of interfacial interactions in high density polyethylene filled with glass spheres using dynamic-mechanical analysis[J].Journal of Applied Polymer Science,1990,39(7):1527-1539.
    [72]刘美宏,彭立民,傅峰,等.木质阻尼复合结构隔声性能的研究现状[J].林产工业,2016,43(6):5-9.LIU MH,PENG L M,FU F,et al.Research status of sound insulation performance of wooden damping composite structure[J].China Forest Products Industry,2016,43(6):5-9.
    [73]徐信武,杨雪莲,吕吉宁,等.表面阻尼涂饰意杨单板的动态力学特性[J].南京林业大学学报(自然科学版),2016,40(4):125-130.XU X W,YANG X L,LYU J N,et al.Dynamic mechanical characteristics of poplar veneers painted with damping coatings[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2016,40(4):125-130.
    [74]鲍敏振,于红卫,鲍滨福.丙二酸二乙酯改性酚醛树脂胶粘剂的制备与性能研究[J].中国胶粘剂,2013,22(6):26-30.BAO MZ,YU H W,BAO B F.Study on preparation and properties of PF adhesive modified by diethyl malonate[J].China Adhesives,2013,22(6):26-30.
    [75]刘聪,张洋.纳米纤维素增强豆胶胶合性能的热分析[J].包装工程,2015,36(13):15-19.LIU C,ZHANG Y.Thermal analysis on the bond strength of the soybean adhesive improved by nanocrystalline cellulose[J].Packaging Engineering,2015,36(13):15-19.
    [76]FANG L,CHANG L,GUO W J,et al.Preparation and characterization of wood-plastic plywood bonded with high density polyethylene film[J].European Journal of Wood and Wood products,2013,71(6):739-746.
    [77]BAISHYA P,MAJI T K.Studies on effects of different cross-linkers on the properties of starch-based wood composites[J].ACS Sustainable Chemistry&Engineering,2014,2(7):1760-1768.
    [78]GHASEMI I,AZIZI H,NAEIMIAN N.Investigation of the dynamic mechanical behavior of polypropylene/(wood flour)/(kenaf fiber)hybrid composites[J].Journal of Vinyl and Additive Technology,2009,15(2):113-119.
    [79]XIE Y J,XIAO Z F,GRUNEBERG T,et al.Effects of chemical modification of wood particles with glutaraldehyde and 1,3-dimethylol-4,5-dihydroxyethyleneurea on properties of the resulting polypropylene composites[J].Composites Science and Technology,2010,70(13):2003-2011.
    [80]党文杰,宋永明,王清文,等.木纤维/聚丙烯复合材料界面相容性及增韧改性的研究[J].北京林业大学学报,2007,29(2):133-137.DANG W J,SONG Y M,WANG Q W,et al.Interfical compatibility and toughening modification of wood fiber-polypropylene composites[J].Journal of Beijing Forestry University,2007,29(2):133-137.
    [81]GHASEMI I,FARSI M.Interfacial behaviour of wood plastic composite:effect of chemical treatment on wood fibers[J].Iranian Polymer Journal,2010,19(10):811-818.
    [82]CHANG F C,KADLA J F,LAMF.The effects of wood flour content and coupling agent on the dynamic mechanical and relaxation properties of wood-plastic composites[J].European Journal of Wood and Wood products,2016,74(1):23-30.
    [83]WEI L Q,Mc DONALD A G,FREITAG C,et al.Effects of wood fiber esterification on properties,weatherability and biodurability of wood plastic composites[J].Polymer Degradation and Stability,2013,98(7):1348-1361.
    [84]MAITI A.A geometry-based approach to determining time-temperature superposition shifts in aging experiments[J].Rheologica Acta,2016,55(1):83-90.
    [85]FERRY J D.Viscoelastic properties of polymers[M].Hoboken:John Wiley&Sons,1980.
    [86]WANG F L,HUANG T L,SHAO Z P.Application of TTSP to wood-development of a vertical shift factor[J].Holzforschung,2017,71(1):51-55.
    [87]TAJVIDI M,FALK R H,HERMANSON J C.Time-temperature superposition principle applied to a kenaf-fiber/high-density polyethylene composite[J].Journal of Applied Polymer Science,2005,97(5):1995-2004.
    [88]PENG H,JIANG J L,LU J X,et al.Application of time-temperature superposition principle to Chinese fir orthotropic creep[J].Journal of Wood Science,2017,63(5):455-463.
    [89]NIELSEN L E,LANDEL R F.Mechanical properties of polymers and composites[M].New York:Marcel Dekker,1994.
    [90]CHANG F C,LAMF,KADLA J F.Using master curves based on time-temperature superposition principle to predict creep strains of wood-plastic composites[J].Wood Science and Technology,2013,47(3):571-584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700