用户名: 密码: 验证码:
热暴露对表面预形变单晶合金组织和性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Thermal Exposure on the Micro-structure and Performance of Surface Pre-deformed Single-crystal Superalloy
  • 作者:王欣 ; 艾莹珺 ; 汤智慧 ; 刘晨光 ; 李春志 ; 赵振业
  • 英文作者:Wang Xin;Ai Yingjun;Tang Zhihui;Liu Chenguang;Li Chunzhi;Zhao Zhenye;AECC Beijing Institute of Aeronautical Materials;Aviation Key Laboratory of Advanced Corrosion and Protection on Aviation Materials;National Key Laboratory of Advanced High Temperature Structural Materials;
  • 关键词:单晶合金 ; 热暴露 ; 喷丸 ; 预形变 ; 表层组织
  • 英文关键词:single-crystal superalloy;;thermal exposure;;shot peening;;pre-deform;;surface microstructure
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:中国航发北京航空材料研究院;航空材料先进腐蚀与防护航空重点实验室;先进高温结构材料国防科技重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.391
  • 基金:航空基金(2015ZF21017)
  • 语种:中文;
  • 页:COSE201902030
  • 页数:7
  • CN:02
  • ISSN:61-1154/TG
  • 分类号:221-227
摘要
针对[001]取向的DD11单晶合金,在垂直于[001]方向进行2种强度的铸钢弹丸喷丸强化以引入表面预形变,采用电子背散射衍射(EBSD)、扫描电镜和硬度测试等方法研究了预形变后表层组织;后续不同温度热暴露完成后,采用扫描电镜和硬度计,研究了热暴露温度和预形变程度对表层组织和硬度梯度的共同影响;并且表征了喷丸+热暴露后单晶合金的高温疲劳性能。结果表明,单晶合金喷丸预形变后表面出现[110]和[111]取向的亚晶,同时出现表面应变硬化效果;随着形变程度的增大,亚晶取向角、旋转亚晶层深度和硬化效果也随之增大。随着热暴露温度升高,预形变表面形变组织呈现球化-零星不连续胞状组织-连续胞状组织-再结晶的动态回复过程,硬化效果也随之松弛;形变程度越大,开始出现动态回复过程的温度越低,但喷丸+1060℃/2 h热暴露并未观察到再结晶。相比磨削状态,喷丸+热暴露后,1060℃轴向疲劳寿命有所提高。1060℃/350 MPa/R=–1/轴向疲劳源呈现内部萌生为主源,表面为次源的状态。
        The [001] oriented DD11 single-crystal superalloy(SC) was shot-peened perpendicular to [001] to induce pre-deformation.Pre-deformed microstructure was investigated using electron backscatter diffraction(EBSD), scanning electron microscopy(SEM) an d microhardness tester(HT). After subsequent thermal exposure(TE) at different temperatures, the effect of the temperature and pre-deformation degree on surface structure and microhardness profile was researched by SEM and HT, and the high-temperature fatigue performance after peening-thermal exposure was tested. The results show that after pre-deformation, [110] and [111] oriented sub-grains are observed on the surface, and surface strain hardening effect occurs. The greater the deformation degree, the larger the sub-grain orientation angle, and the greater the depth of the rotating sub-grain layer and hardening effect. With the increase of exposure temperature,the pre-deformed surface microstructure shows a dynamic recovery process of spheroidization, fragmentation-discontinuous cellular organization and continuous cellular organization, and the micro-hardness is relaxed. Furthermore, the greater the deformation degree, the lower the temperature at which the recovery process occurs. However, no recrystallization is observed under the condition of shot peening+1060 oC/2 h. Compared with grinding and TE, the 1060 oC fatigue cycles increase after peening and TE. For fatigue condition of1060 oC/350 MPa/R=?1/axic, the main source of fatigue is sprouting inside, while secondary sources appear on the surface.
引文
[1]Cetel A D,Duhl D N.Superalloy 1988[C].Warrendale,PA:TMS,1988:235
    [2]Seth B B.Superalloy 2000[C].Warrendale,PA:TMS,2000:3
    [3]Tao Chunhu(陶春虎),Zhang Weifang(张卫方),Li Yunju(李运菊)et al.Failure Analysis and Prevention(失效分析与预防)[J],2006,1(4):1
    [4]Xiong Jichun(熊继春),Li Jiarong(李嘉荣),Liu Shizhong(刘世忠)et al.Material Engineering(材料工程)[J],2009(S1):110
    [5]Xiong Jichun(熊继春),Li Jiarong(李嘉荣),Zhao Jinqian(赵金乾)et al.Acta Metallurgica Sinica(金属学报)[J],2009,45(10):1232
    [6]Wang Zhigang(王志刚),Zhao Jingchen(赵京晨)Yan Ping(燕平)et al.Journal of Iron and Steel Research(钢铁研究学报)[J],2009,21(2):23
    [7]Wei Wenjuan(魏文娟),Tang Haijun(唐海军),Feng Qiang(冯强).Materials Engineering(材料工程)[J],2011,8:42
    [8]Zambaldi C,Roters F,Raabe D et al.Materials Science&Engineering A[J],2007,454-455(16):433
    [9]Yuan Hailong(袁海龙),Liu Shizhong(刘世忠),Han Mei(韩梅)et al.Journal of Aeronautical Materials(航空材料学报)[J],2006,26(5):18
    [10]Li Zhiqian(李志强),Huang Zhaohui(黄朝晖),Tan Yongning(谭永宁)et al.Journal of Aeronautical Materials(航空材料学报)[J],2011,31(5):1
    [11]Zhang Bing(张兵),Liu Delin(刘德林),Tao Chunhu(陶春虎)et al.Journal of Aeronautical Materials(航空材料学报)[J],2012,32(6):85
    [12]Liu Lirong(刘丽荣),Han Shuo(韩烁),Pu Yifan(浦一凡)et al.Cast(铸造)[J],2016,65(8):779
    [13]Sun Ruifeng(孙瑞峰),Zhang Xiaobing(张晓兵),Cao Wenbin(曹文斌)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2014,43(5):1193
    [14]Gao Qi(高奇),Gong Yadong(巩亚东),Zhou Yunguang(周云光)et al.Journal of Northeastern University,Natural Science(东北大学学报:自然科学版)[J],2017,38(4):542
    [15]Chen Yanhua(陈艳华).Thesis for Doctorate(博士论文)[D].Shanghai:Shanghai Jiaotong University,2014
    [16]Wang Xin(王欣),You Hongde(尤宏德),Li Jiarong(李嘉荣)et al.Materials Engineering(材料工程)[J],2014,4:53
    [17]Gao Yukui(高玉魁).Heat Treatment of Metals(金属热处理)[J],2009,34(8):60
    [18]Liu Z,Yue Z,Zhi X et al.Rare Metal Materials and Engineering[J],2013,42(8):1563
    [19]Wright P K,Jain M,Cameron D.Superalloys 2004[C].Warrendale,PA:2004:657
    [20]He Y H,Hou X Q,Tao C H et al.Engineering Failure Analysis[J],2011,18(3):944
    [21]Li Jiarong(李嘉荣),Jin Haipeng(金海鹏),Liu Shizhong(刘世忠).Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2007,36(10):1784
    [22]Wang Xin(王欣),Cao Lamei(曹腊梅),Du Zhineng(杜治能)et al.The 11th National Heat Treatment Conference[C].Beijing:Chinese Heat Treatment Society,2015
    [23]Hu Chunyan(胡春燕),Liu Xinling(刘新灵),Tao Chunhu(陶春虎).Failure Analysis and Prevention(失效分析与预防)[J],2014,9(4):224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700