某电厂汽轮机低压缸零出力供热工况低压末级叶片动强度分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic strength analysis of the low pressure last stage blade under zero-output heating conditions of low pressure cylinder in a power plant
  • 作者:谷伟伟 ; 张永海 ; 余小兵 ; 高庆 ; 高登攀 ; 宋文希
  • 英文作者:GU Weiwei;ZHANG Yonghai;YU Xiaobing;GAO Qing;GAO Dengpan;SONG Wenxi;Xi'an Thermal Power Research Institute Co.,Ltd.;
  • 关键词:汽轮机 ; 低压缸零出力供热 ; 叶片 ; 有限元方法 ; 振动方程 ; 动应力
  • 英文关键词:turbine;;zero-output heating conditions of low pressure cylinder;;blade;;finite element method;;vibration equation;;dynamic stress
  • 中文刊名:RLFD
  • 英文刊名:Thermal Power Generation
  • 机构:西安热工研究院有限公司;
  • 出版日期:2018-06-04 15:39
  • 出版单位:热力发电
  • 年:2018
  • 期:v.47;No.378
  • 语种:中文;
  • 页:RLFD201805011
  • 页数:8
  • CN:05
  • ISSN:61-1111/TM
  • 分类号:69-76
摘要
汽轮机低压缸零出力供热工况下,低压缸的进汽流量急剧减小,会导致低压末级叶片运行工况严重偏离设计值而影响其安全性。本文采用有限元方法,建立了某电厂300 MW汽轮机低压末级叶片在汽流激振力下的振动方程,采用直接积分方法分别计算了叶片在设计工况和低压缸零出力供热工况下的动应力。结果表明:设计工况下叶片的最大动应力为5.973 MPa,位于叶顶区域;低压缸零出力供热工况下叶片的最大动应力为1.119 MPa,位于凸肩区域,该最大动应力小于设计工况,说明低压缸零出力供热工况下叶片的动强度满足制造厂设计要求。
        The steam input flow of low pressure cylinder under zero-output heating conditions is decreased sharply, which causes the last stage blade to seriously deviate from the design value and then affects its safety. Based on the finite element method, the vibration equation of the low pressure last stage blade of a 300 MW steam turbine under steam flow excitation force is established. The dynamic stresses of the blade under the design condition and zerooutput heating conditions of low pressure cylinder are calculated separately by direct integration method. The calculation results show that the maximum dynamic stress under the design condition is 5.973 MPa, which is located in the tip region of the blade. On the other hand, the maximum dynamic stress under zero-output heating conditions of low pressure cylinder is 1.119 MPa, which is located in the shoulder region. The dynamic stress under zerooutput heating conditions of low pressure cylinder is less than that under the design condition, indicating that the dynamic strength of the blade under zero-output heating conditions of low pressure cylinder meets the design requirements of the manufacturer.
引文
[1]李秉正,贾勤劳,宁哲,等.超临界600 MW抽汽供热汽轮机组在工业供热中的应用分析[J].热力发电,2008,37(11):15-17.LI Bingzheng,JIA Qinlao,NING Zhe,et al.Analysis about application supercritical 600 MW extraction steam turbine for heating in industry[J].Thermal Power Generation,2008,37(11):15-17.
    [2]闫森,王伟芳,蒋浦宁.300 MW汽轮机供热改造双低压转子互换技术应用[J].热力发电,2015,44(1):10-12.YAN Sen,WANG Weifang,JIANG Puning.Application of double LP rotor interchangeable technology for heating improving in 300 MW steam turbines[J].Thermal Power Generation,2015,44(1):10-12.
    [3]江浩,黄家驷,王浩.200 MW高背压循环水供热机组热力特性研究[J].热力发电,2015,44(4):17-21.JIANG Hao,HUANG Jiasi,WANG Hao.Thermodynamic characteristics of a 200 MW unit with high back pressure circulating water heating[J].Thermal Power Generation,2015,44(4):17-21.
    [4]吴斌,邵志跃,胡欣,等.215 MW机组工业抽汽供热改造[J].热力发电,2015,44(5):87-90.WU Bin,SHAO Zhiyue,HU Xin,et al.Heat supply transformation for four 215 MW units using steam extraction[J].Thermal Power Generation,2015,44(5):87-90.
    [5]王漪,薛永锋,邓楠.供热机组以热定电调峰范围的研究[J].中国电力,2013,46(3):59-62.WANG Yi,XUE Yongfeng,DENG Nan.Study on heatload-based peak regulation for cogeneration units[J].Electric Power,2013,46(3):59-62.
    [6]王漪,薛永锋,张敏,等.基于能量平衡法的以热定电数学模型研究[J].汽轮机技术,2014,56(2):150-152.WANG Yi,XUE Yongfeng,ZHANG Min,et al.Research on mathematical model of ordering power by heat based on energy-balance method[J].Turbine Technology,2014,56(2):150-152.
    [7]王宏伟,冯垚飞,冯林魁,等.供热机组调峰性能试验[J].热力发电,2014,43(4):106-109.WANG Hongwei,FENG Yaofei,FENG Linkui,et al.Experimental study on peaking capability of a heating unit[J].Thermal Power Generation,2014,43(4):106-109.
    [8]马佳燕.火电机组运行灵活性及高效宽负荷技术综述[J].热力透平,2017,46(2):108-110.MA Jiayan.A review of flexible operation and high efficiency technology with wide load in thermal power units[J].Thermal Turbine,2017,46(2):108-110.
    [9]龚胜,石奇光,冒玉晨,等.我国火电机组灵活性现状与技术发展[J].应用能源技术,2017(5):1-6.GONG Sheng,SHI Qiguang,MAO Yuchen,et al.Present situation and development of flexible technology of thermal power units in China[J].Applied Energy Technology,2017(5):1-6.
    [10]张扬军,李克俭,陶德平.叶片间相角对蒸汽轮机叶片颤振的影响[J].航空动力学报,1994,9(3):277-280.ZHANG Yangjun,LI Kejian,TAO Deping.Effect of interblade phase angle on blade flutter of steam turbine[J].Journal of Aerospace Power,1994,9(3):277-280.
    [11]姜伟,谢诞梅,陈畅,等.基于时域分析法的汽轮机末级叶片颤振预测及分析[J].振动与冲击,2015,34(11):194-199.JIANG Wei,XIE Danmei,CHEN Chang,et al.Flutter prediction and analysis for a steam turbine last-stage blade based on time domain analysis method[J].Journal of Vibration and Shock,2015,34(11):194-199.
    [12]王仲博.小容积流量下汽轮机末级长叶片可靠性的试验研究[J].中国电机工程学报,1987,7(4):43-49.WANG Zhongbo.Research and experiment of reliability of last blades of steam turbine at small volumetric flow[J].Proceedings of the CSEE,1987,7(4):43-49.
    [13]朱宝田,吴厚钰.汽轮机叶片动应力计算方法的研究[J].西安交通大学学报,2000,34(1):26-29.ZHU Baotian,WU Houyu.Dynamic stress calculation of steam turbine blade[J].Journal of Xi’an Jiaotong University,2000,34(1):26-29.
    [14]仲梁维,陆龙云.叶片动应力计算的重要改进及其在不调频叶片设计上的应用[J].动力工程,2003,23(2):2261-2265.ZHONG Liangwei,LU Longyun.Important improvement of the calculation in the blade dynamic stress and application of the design in the blades of the various stages[J].Power Engineering,2003,23(2):2261-2265.
    [15]谷伟伟,常东锋,江浩,等.大容量汽轮机不同阀序工况下调节级叶片的动应力数值分析[J].汽轮机技术,2016,58(1):20-22.GU Weiwei,CHANG Dongfeng,JIANG Hao,et al.Numerical analysis of the governing stage dynamic stress of a large capacity turbine under different valve operating conditions[J].Turbine Technology,2016,58(1):20-22.
    [16]常东锋,谷伟伟,徐自力.大容量汽轮机阀序改造后调节级叶片强度安全性分析[J].汽轮机技术,2016,58(4):245-247.CHANG Dongfeng,GU Weiwei,XU Zili,et al.Strength analysis of the governing stage of a large capacity turbine after valve sequence modification[J].Turbine Technology,2016,58(4):245-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700