如何理解高能伽玛射线暴?
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:How to understand high-energy gamma-ray bursts?
  • 作者:戴子高 ; 吴雪峰 ; 梁恩维
  • 英文作者:Zi-Gao Dai;Xue-Feng Wu;En-Wei Liang;School of Astronomy and Space Science, Nanjing University;Purple Mountain Observatory, Chinese Academy of Sciences;Guangxi Key Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University;
  • 关键词:伽玛射线暴 ; 高能天体物理 ; 引力波 ; 多信使 ; 基本物理
  • 英文关键词:gamma-ray bursts;;high energy astrophysics;;gravitational waves;;multi-messenger;;fundamental physics
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:南京大学天文与空间科学学院;中国科学院紫金山天文台;广西相对论天体物理重点实验室广西大学物理科学与工程技术学院;
  • 出版日期:2018-08-30
  • 出版单位:科学通报
  • 年:2018
  • 期:v.63
  • 基金:国家重点基础研究发展计划(2014CB845800);; 国家自然科学基金(11573014,11725314,11533003);; 中国科学院战略性先导科技专项(XDB23040000)资助
  • 语种:中文;
  • 页:KXTB201824006
  • 页数:15
  • CN:24
  • ISSN:11-1784/N
  • 分类号:46-60
摘要
伽玛射线暴(简称伽玛暴或gamma ray burst,GRB)是来自宇宙深处的、短时标的伽玛射线突然增强的现象,是宇宙大爆炸之后最猛烈的爆发现象.伽玛暴可分为长暴(持续时间T_(90)>2 s)和短暴(T_(90)<2 s).观测发现,长暴起源于大质量恒星的塌缩,而短暴起源于双致密星的并合.除了瞬时伽玛辐射,伽玛暴分别在暴后周、月和年时间量级上还会产生X射线、光学和射电余辉.理论上,伽玛暴的瞬时辐射被认为产生于相对论喷流内部的能量耗散过程,而多波段的余辉则产生于相对论喷流与外部介质之间的相互碰撞引起的外激波.因此,伽玛暴是研究致密天体(恒星级质量黑洞和中子星)诞生、引力波辐射、相对论激波、极高能宇宙线、高能中微子等极端物理现象以及高精度检验基本物理原理的天文实验室,也是早期宇宙恒星形成和演化、高红移星系、高红移宇宙学的重要探针.伽玛暴的研究横跨当今天文学、宇宙学、物理学等学科,是当前国际竞争最激烈的自然科学基础研究领域之一.2017年8月17日,LIGO(laser interferometer gravitational wave observatory)/Virgo引力波天文台和Fermi卫星同时分别探测到引力波事件GW170817和短时标伽玛暴GRB170817A,开辟了多信使天文学的新时代.本文结合相关的关键科学问题评述了伽玛暴和引力波电磁对应体研究领域的最新研究进展,并基于伽玛暴学科领域的发展态势和我国现有的研究基础,讨论如何抓住机遇、布局跨学科的重大研究计划,促进国内与伽玛暴相关科学设备成果的最大化,全面提升我国在这个领域的国际影响力.
        Gamma-ray bursts(GRBs) are short-duration flashes of gamma rays occurring at cosmological distances and the most violent explosive phenomena since the cosmic big bang. GRBs were accidentally discovered by Vela military satellites of United States in 1967. The BATSE instrument onboard the Compton Space Gamma-Ray Observatory found two types of GRBs, long-duration(T_(90)> 2 s) and short-duration(T_(90)< 2 s). In 1997, the Beppo SAX satellite for the first time made precise localization of long GRBs, leading to the discoveries of multi-wavelength afterglows, host galaxies and cosmological redshifts of long GRBs. These milestone observations were selected by Science as one of the top ten scientific breakthroughs of the year. In 1999, long GRBs were found to be associated with the birth of stellar mass black holes. In 2003, the HETE-II satellite discovered the first direct association of a long GRB with a type Ic supernova, confirming that long GRBs are linked to the core collapse of massive stars. Science ranked these two major advances as one of the world's top ten scientific breakthroughs of the year in 1999 and 2003, respectively. In 2005, the Swift satellite made the first accurate localization of short GRBs, leading to the discoveries of afterglows, host galaxies and redshifts of short GRBs. These observations provide indirect evidence that short GRBs originate from mergers of binary systems of compact objects(at least including one neutron star) at cosmological distances. In particular, on 2017 August 17, the LIGO/Virgo gravitational wave(GW) detectors, for the first time, discovered a GW event from a binary neutron star(BNS) merger, GW170817.About 1.74 s after the merger, Fermi/GBM detected a short gamma-ray burst(named GRB170817 A). Subsequently, many ground-based and space-based telescopes detected X-ray, ultraviolet, optical, nearly infrared, and radio counterparts to GW170817, especially including a multi-wavelength kilonova(named AT2017 gfo). These discoveries mark the beginning of a new era of multi-messenger astronomy. To summarize, all the observations have shown that long bursts originate from the core collapse of massive stars and short bursts originate from the mergers of binary compact objects(at least including one neutron star); besides prompt gamma-ray emission, the sources of GRBs produce X-ray, optical and radio afterglows in timescales of weeks, months and years after the burst trigger, respectively. Theoretically, prompt gamma-ray emissions of GRBs are thought to arise from some energy dissipation processes in the interiors of relativistic jets and multi-wavelength afterglows arise from forward shocks due to collisions between the jets and their ambient media. Therefore, GRBs are not only astronomical laboratories of studying extremely physical phenomena(e.g., newborn compact objects including stellar-mass black holes and neutron stars, gravitational waves, ultra-high-energy cosmic rays, and high-energy neutrinos)and of testing the basic physical principles with high accuracy, but also become an important probe of the star formation and evolution in the early universe, high-redshift galaxies, and cosmology. GRBs now are a multidisciplinary field(including astronomy, cosmology, and physics) and thus one of the most competitive fundamental research fields. In this paper, we review recent researches of GRBs and electromagnetic counterparts to gravitational waves, by focusing on the relevant key scientific issues, and discuss how to seize the opportunity to plan the interdisciplinary strategy based on the development trend and the research foundation in China, to maximize domestic scientific equipment achievements, and to enhance Chinese international influence in this field.
引文
1 Abbott B P,Abbott R,Abbott T D,et al.GW170817:Observation of gravitational waves from a binary neutron star inspiral.Phys Rev Lett,2017,119:161101
    2 Abbott B P,Abbott R,Abbott T D,et al.Multi-messenger observations of a binary neutron star merger.Astrophys J,2017,848:L12-L70
    3 Li T,Xiong S,Zhang S,et al.Insight-HXMT observations of the first binary neutron star merger GW170817.Sci China Phys Mech Astron,2018,61:031011
    4 Hu L,Wu X,Andreoni I,et al.Optical observations of LIGO Source GW 170817 by the antarctic survey telescopes at dome A,Antarctica.Sci Bull,2017,62:1433-1438
    5 Woosley S E.Gamma-ray bursts from stellar mass accretion disks around black holes.Astrophys J,1993,405:273-277
    6 Galama T J,Vreeswijk P M,van Paradijs J,et al.An unusual supernova in the error box of theγ-ray burst of 25 April 1998.Nature,1998,395:670-672
    7 Eichler D,Livio M,Piran T,et al.Nucleosynthesis,neutrino bursts and gamma-rays from coalescing neutron stars.Nature,1989,340:126-128
    8 Paczynski B.Cosmological gamma-ray bursts.Acta Astron,1991,41:257-267
    9 Cutler C,Thorne K S.An overview of gravitational-wave sources.2002,ar Xiv:0204090
    10 Liu T,Gu W M,Zhang B.Neutrino-dominated accretion flows as the central engine of gamma-ray bursts.New Astron Rev,2017,79:1-25
    11 Blandford R D,Znajek R L.Electromagnetic extraction of energy from Kerr black holes.Mon Not Roy Astron Soc,1977,179:433-456
    12 Wu X F,Hou S J,Lei W H.Giant X-ray bump in GRB 121027A:Evidence for fall-back disk accretion.Astrophys J,2013,767:L36-L40
    13 Lei W H,Zhang B,Liang E W.Hyperaccreting black hole as gamma-ray burst central engine.I.Baryon loading in gamma-ray burst jets.Astrophys J,2013,765:125-132
    14 Lei W H,Wang D X,Zhang L,et al.Magnetically torqued neutrino-dominated accretion flows for gamma-ray bursts.Astrophys J,2009,700:1970-1976
    15 Fan Y Z,Wei D M.Short gamma-ray bursts:The mass of the accretion disk and the initial radius of the outflow.Astrophys J,2011,739:47-53
    16 Liu T,Lin Y Q,Hou S J,et al.Can black hole neutrino-cooled disks power short gamma-ray bursts?Astrophys J,2015,806:58-64
    17 Usov V V.Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts.Nature,1992,357:472-474
    18 Dai Z G,Lu T.Gamma-ray burst afterglows and evolution of postburst fireballs with energy injection from strongly magnetic millisecond pulsars.Astron Astrophys,1998,333:L87-L90
    19 Fan Y Z,Xu D.The X-ray afterglow flat segment in short GRB 051221A:Energy injection from a millisecond magnetar?Mon Not Royal Astron Soc,2006,372:L19-L22
    20 Fan Y Z,Yu Y W,Xu D,et al.A supramassive magnetar central engine for GRB 130603B.Astrophys J,2013,779:L25-L28
    21 Wu X F,Gao H,Ding X,et al.A double neutron star merger origin for the cosmological relativistic fading source PTF11agg?Astrophys J,2014,781:L10-L14
    22 Dai Z G,Wang X Y,Wu X F,et al.X-ray flares from postmerger millisecond pulsars.Science,2006,311:1127-1129
    23 Lu H J,Zhang B A.Test of the millisecond magnetar central engine model of gamma-ray bursts with swift data.Astrophys J,2014,785:74-88
    24 Lu H J,Zhang B,Lei W H,et al.The millisecond magnetar central engine in short GRBs.Astrophys J,2015,805:89-106
    25 Chen W,Xie W,Lei W H,et al.Signature of a newborn black hole from the collapse of a supra-massive millisecond magnetar.Astrophys J,2017,849:119-124
    26 Dai Z G,Lu T.γ-Ray bursts and afterglows from rotating strange stars and neutron stars.Phys Rev Lett,1998,81:4301-4304
    27 Cheng K S,Dai Z G.Are softγ-ray repeaters strange stars?Phys Rev Lett,1998,80:18-21
    28 Cheng K S,Dai Z G,Wei D M,et al.Is GRO J1744-28 a strange star?Science,1998,280:407-409
    29 Zhang B B,Zhang B,Liang E W,et al.A comprehensive analysis of Fermi gamma-ray burst data.I.Spectral components and the possible physical origins of LAT/GBM GRBs.Astrophys J,2011,730:141-173
    30 Ryde F.Is thermal emission in gamma-ray bursts ubiquitous?Astrophys J,2005,625:L95-L98
    31 Abdo A A,Ackermann M,Ajello M,et al.Fermi observations of GRB 090902B:A distinct spectral component in the prompt and delayed emission.Astrophys J,2009,706:L138-L144
    32 Ackermann M,Ajello M,Asano K,et al.Detection of a spectral break in the extra hard component of GRB 090926A.Astrophys J,2011,729:114-125
    33 Lu R J,Wei J J,Liang E W,et al.A comprehensive analysis of Fermi gamma-ray burst data.II.Ep evolution patterns and implications for the observed spectrum-luminosity relations.Astrophys J,2012,756:112-124
    34 Racusin J L,Karpov S V,Sokolowski M,et al.Broadband observations of the naked-eyeγ-ray burst GRB080319B.Nature,2008,455:183-188
    35 Zhang B,Fan Y Z,Dyks J,et al.Physical processes shaping gamma-ray burst X-ray afterglow light curves:Theoretical implications from the Swift X-Ray telescope observations.Astrophys J,2006,642:354-370
    36 Nousek J A,Kouveliotou C,Grupe D,et al.Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data.Astrophys J,2006,642:389-400
    37 Li L,Liang E W,Tang Q W,et al.A comprehensive study of gamma-ray burst optical emission.I.Flares and early shallow-decay component.Astrophys J,2012,758:27-44
    38 Wu X F,Dai Z G,Huang Y F,et al.Optical flashes and very early afterglows in wind environments.Mon Not Roy Astron Soc,2003,342:1131-1138
    39 Fan Y Z,Wei D M,Wang C F.The very early afterglow powered by ultra-relativistic mildly magnetized outflows.Astron Astrophys,2004,424:477-484
    40 Fan Y Z,Zhang B,Wei D M.Early optical afterglow light curves of neutron-fed gamma-ray bursts.Astrophys J,2005,628:298-314
    41 Tanvir N R,Levan A J,Fruchter A S,et al.A“kilonova”associated with the short-durationγ-ray burst GRB 130603B.Nature,2013,500:547-549
    42 Kumar P,Barniol D R.On the generation of high-energy photons detected by the Fermi Satellite from gamma-ray bursts.Mon Not Roy Astron Soc,2009,400:L75-L79
    43 Meszaros P,Rees M J.Optical and long-wavelength afterglow from gamma-ray bursts.Astrophys J,1997,476:232-237
    44 Dai Z G,Lu T.Gamma-ray burst afterglows:Effects of radiative corrections and non-uniformity of the surrounding medium.Mon Not Roy Astron Soc,1998,298:87-92
    45 Huang Y F,Dai Z G,Lu T.A generic dynamical model of gamma-ray burst remnants.Mon Not Roy Astron Soc,1999,309:513-516
    46 Liang E W,Zhang B,O’Brien P T,et al.Testing the curvature effect and internal origin of gamma-ray burst prompt emissions and X-Ray flares with Swift data.Astrophys J,2006,646:351-357
    47 Wang F Y,Dai Z G.Self-organized criticality in X-ray flares of gamma-ray-burst afterglows.Nat Phys,2013,9:465-467
    48 Zhang S N,Liu Y,Yi S,et al.Do we expect to detect electromagnetic radiation from merging stellar mass black binaries like GW150914?2016,ar Xiv:1604.02537
    49 Connaughton V,Burns E,Goldstein A,et al.Fermi GBM observations of LIGO gravitational-wave event GW150914.Astrophys J,2016,826:L6-L24
    50 Xiong S.Is the GW150914-GBM really associated with the GW150914?2016,ar Xiv:1605.05447
    51 Metzger B D.Kilonovae.Living Rev Relativ,2017,20:3-61
    52 Zhang B.Early X-ray and optical afterglow of gravitational wave bursts from mergers of binary neutron stars.Astrophys J,2013,763:L22-L25
    53 Gao H,Zhang B,Lu H J.Constraints on binary neutron star merger product from short GRB observations.Phys Rev D,2016,93:044065
    54 Metzger B D,Berger E.What is the most promising electromagnetic counterpart of a neutron star binary merger?Astrophys J,2012,746:48-62
    55 Rowlinson A,O’Brien P T,Tanvir N R,et al.The unusual X-ray emission of the short Swift GRB 090515:Evidence for the formation of a magnetar?Mon Not Roy Astron Soc,2010,409:531-540
    56 Rowlinson A,O’Brien P T,Metzger B D,et al.Signatures of magnetar central engines in short GRB light curves.Mon Not Roy Astron Soc,2013,430:1061-1087
    57 Yu Y W,Zhang B,Gao H.Bright“Merger-nova”from the remnant of a neutron star binary merger:A signature of a newly born,massive,millisecond magnetar.Astrophys J,2013,776:L40-L44
    58 Gao H,Ding X,Wu X F,et al.Bright broadband afterglows of gravitational wave bursts from mergers of binary neutron stars.Astrophys J,2013,771:86-83
    59 Drout M R,Piro A L,Shappee B J,et al.Light curves of the neutron star merger GW170817/SSS17a:Implications for R-process nucleosynthesis.2017,ar Xiv:1710.05443
    60 Lattimer J M,Schramm D N.Black-hole-neutron-star collisions.Astrophys J,1974,192:L145-L147
    61 Li L X,Paczynski B.Transient events from neutron star mergers.Astrophys J,1998,507:L59-L62
    62 Kulkarni S R.Modeling supernova-like explosions associated with gamma-ray bursts with short durations.2005,ar Xiv:0510256
    63 Metzger B D,Mart?nez Pinedo G,Darbha S,et al.Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei.Mon Not Roy Astron Soc,2010,406:2650-2662
    64 Kasen D,Badnell N R,Barnes J.Opacities and spectra of the R-process ejecta from neutron star mergers.Astrophys J,2013,774:25-37
    65 Yang B,Jin Z P,Li X,et al.A possible macronova in the late afterglow of the long-short burst GRB 060614.Nat Commun,2015,6:7323
    66 Jin Z P,Li X,Cano Z,et al.The light curve of the macronova associated with the long-short burst GRB 060614.Astrophys J,2015,811:L22-L26
    67 Jin Z P,Hotokezaka K,Li X,et al.The Macronova in GRB 050709 and the GRB-macronova connection.Nat Commun,2016,7:12898
    68 Gao H,Ding X,Wu X F,et al.GRB 080503 late afterglow re-brightening:Signature of a magnetar-powered merger-nova.Astrophys J,2015,807:163-170
    69 Gao H,Zhang B,Lu H J,et al.Searching for magnetar-powered merger-novae from short GRBS.Astrophys J,2017,837:50-58
    70 Pian E,D’Avanzo P,Benetti S,et al.Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger.Nature,2017,551:67-70
    71 Ackermann M,Ajello M,Asano K,et al.Fermi-LAT observations of the gamma-ray burst GRB 130427A.Science,2014,343:42-47
    72 Piran T,Nakar E.On the external shock synchrotron model for gamma-ray bursts’Ge V emission.Astrophys J,2010,718:L63-L67
    73 Tang Q W,Peng F K,Wang X Y,et al.Measuring the bulk lorentz factors of gamma-ray bursts with Fermi.Astrophys J,2015,806:194-203
    74 Waxman E.Cosmological gamma-ray bursts and the highest energy cosmic rays.Phys Rev Lett,1995,75:386-389
    75 Wang X Y,Razzaque S,Meszaros P,et al.High-energy cosmic rays and neutrinos from semirelativistic hypernovae.Phys Rev D,2007,76:083009
    76 Asano K,Guiriec S,Meszaros P.Hadronic models for the extra spectral component in the short GRB 090510.Astrophys J,2009,705:L191-L194
    77 Waxman E,Bahcall J.High energy neutrinos from cosmological gamma-ray burst fireballs.Phys Rev Lett,1997,78:2292-2295
    78 Icecube Collaboration.An absence of neutrinos associated with cosmic-ray acceleration inγ-ray bursts.Nature,2012,484:351-354
    79 He H N,Liu R Y,Wang X Y,et al.Icecube nondetection of gamma-ray bursts:Constraints on the fireball properties.Astrophys J,2012,752:29-38
    80 Murase K,Ioka K.Te V-Pe V neutrinos from low-power gamma-ray burst jets inside stars.Phys Rev Lett,2013,111:121102
    81 Senno N,Murase K,Meszaros P.Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources.Phys Rev D,2016,93:083003
    82 Xiao D,Meszaros P,Murase K,et al.Revisiting the contributions of supernova and hypernova remnants to the diffuse high-energy backgrounds:Constraints on very high redshift injection.Astrophys J,2016,826:133-140
    83 Riess A G,Filippenko A V,Challis P,et al.Observational evidence from supernovae for an accelerating universe and a cosmological constant.Astron J,1998,116:1009-1038
    84 Perlmutter S,Aldering G,Goldhaber G,et al.Measurements of?mand?Λfrom 42 high-redshift supernovae.Astrophys J,1999,517:565-586
    85 Wang F Y,Dai Z G,Liang E W.Gamma-ray burst cosmology.New Astron Rev,2015,67:1-17
    86 Dai Z G,Liang E W,Xu D.Constraining?mand dark energy with gamma-ray bursts.Astrophys J,2004,612:L101-L104
    87 Liang E,Zhang B.Model-independent multivariable gamma-ray burst luminosity indicator and its possible cosmological implications.Astrophys J,2005,633:611-623
    88 Schaefer B E.The hubble diagram to redshift>6 from 69 gamma-ray bursts.Astrophys J,2007,660:16-46
    89 Wang F Y,Dai Z G,Zhu Z H.Measuring dark energy with gamma-ray bursts and other cosmological probes.Astrophys J,2007,667:1-10
    90 Wang F Y,Dai Z G.Weak gravitational lensing effects on cosmological parameters and dark energy from gamma-ray bursts.Astron Astrophys,2011,536:A96-A102
    91 Wang F Y,Dai Z G.An evolving stellar initial mass function and the gamma-ray burst redshift distribution.Astrophys J,2011,727:L34-L37
    92 Li H,Xia J Q,Liu J,et al.Overcoming the circular problem for gamma-ray bursts in cosmological global-fitting analysis.Astrophys J,2008,680:92-99
    93 Amati L,Guidorzi C,Frontera F,et al.Measuring the cosmological parameters with the Ep,i-Eisocorrelation of gamma-ray bursts.Mon Not Roy Astron Soc,2008,391:577-584
    94 Totani T.Cosmological gamma-ray bursts and evolution of galaxies.Astrophys J,1997,486:L71-L74
    95 Kistler M D,Yuksel H,Beacom J F,et al.An unexpectedly Swift rise in the gamma-ray burst rate.Astrophys J,2008,673:L119-L122
    96 Wang F Y.The high-redshift star formation rate derived from gamma-ray bursts:Possible origin and cosmic reionization.Astron Astrophys,2013,556:A90-A96
    97 Qin S F,Liang E W,Lu R J,et al.Simulations on high-z long gamma-ray burst rate.Mon Not Roy Astron Soc,2010,406:558-565
    98 Deng C M,Wang X G,Guo B B,et al.Cosmic evolution of long gamma-ray burst luminosity.Astrophys J,2016,820:66-76
    99 Yu H,Wang F Y,Dai Z G,et al.An unexpectedly low-redshift excess of Swift gamma-ray burst rate.Astrophys J,2015,218(Suppl Series):13-24
    100 Petrosian V,Kitanidis E,Kocevski D.Cosmological evolution of long gamma-ray bursts and the star formation rate.Astrophys J,2015,806:44-52
    101 Tsvetkova A,Frederiks D,Golenetskii S,et al.The Konus-Wind catalog of gamma-ray bursts with known redshifts.I.Bursts detected in the triggered mode.Astrophys J,2017,850:161-187
    102 Lynden B D.A method of allowing for known observational selection in small samples applied to 3CR quasars.Mon Not Roy Astron Soc,1971,155:95-118
    103 Liang E,Zhang B,Virgili F,et al.Low-luminosity gamma-ray bursts as a unique population:Luminosty function,local rate,and beaming factor.Astrophys J,2007,662:1111-1118
    104 Sun H,Zhang B,Li Z.Extra-galactic high-energy transients:Event rate densities and luminosity functions.Astrophys J,2015,812:33-50
    105 Wang F Y,Dai Z G.High-redshift star formation rate up to z 8.3 derived from gamma-ray bursts and influence of background cosmology.Mon Not Roy Astron Soc,2009,400:L10-L14
    106 Virgili F J,Zhang B,Nagamine K,et al.Gamma-ray burst rate:High-redshift excess and its possible origins.Mon Not Roy Astron Soc,2011,417:3025-3034
    107 Wu X F,Dai Z G,Huang Y F,et al.Gamma-ray bursts:Polarization of afterglows from two-component jets.M N Royal Astron Soc,2005,357:1197-1204
    108 Lan M X,Wu X F,Dai Z G.Testing models for the shallow decay phase of gamma-ray burst afterglows with polarization observations.Astrophys J,2016,826:128-133
    109 Lan M X,Wu X F,Dai Z G.Polarization evolution of early optical afterglows of gamma-ray bursts.Astrophys J,2016,816:73-83
    110 Zhang B,Yan H.The internal-collision-induced magnetic reconnection and turbulence(ICMART)model of gamma-ray bursts.Astrophys J,2011,726:90-112
    111 Dai Z G.Relativistic wind bubbles and afterglow signatures.Astrophys J,2004,606:1000-1005
    112 Coburn W,Boggs S E.Polarization of the promptγ-ray emission from theγ-ray burst of 6 December 2002.Nature,2003,423:415-417
    113 Yonetoku D,Murakami T,Gunji S,et al.Detection of gamma-ray polarization in prompt emission of GRB 100826A.Astrophys J,2011,743:L30-L34
    114 Steele I A,Mundell C G,Smith R J,et al.Ten per cent polarized optical emission from GRB090102.Nature,2009,462:767-769
    115 Mundell C G,Kopac D,Arnold D M,et al.Highly polarized light from stable ordered magnetic fields in GRB 120308A.Nature,2013,504:119-121
    116 Wiersema K,Covino S,Toma K,et al.Circular polarization in the optical afterglow of GRB 121024A.Nature,2014,509:201-204
    117 Longo M J.New precision tests of the Einstein equivalence principle from SN1987A.Phys Rev Lett,1988,60:173
    118 Krauss L M,Tremaine S.Test of the weak equivalence principle for neutrinos and photons.Phys Rev Lett,1988,60:176
    119 Gao H,Wu X F,Meszaros P.Cosmic transients test Einstein’s equivalence principle out to Ge V energies.Astrophys J,2015,810:121-125
    120 Wei J J,Wu X F,Gao H,et al.Limits on the neutrino velocity,Lorentz invariance,and the weak equivalence principle with Te V neutrinos from gamma-ray bursts.J Cosmol Astro-Part Phys,2016,8:31-39
    121 Wei J J,Zhang B B,Shao L,et al.A new test of lorentz invariance violation:The spectral lag transition of GRB 160625B.Astrophys J,2017,834:L13-L18
    122 Schaefer B E.Severe limits on variations of the speed of light with frequency.Phys Rev Lett,1999,82:4964-4966
    123 Zhang B,Chai Y T,Zou Y C,et al.Constraining the mass of the photon with gamma-ray bursts.J High Energy Astrophys,2016,11:20-28
    124 Produit N,Bao T W,Batsch T,et al.Design and construction of the POLAR detector.2017,ar Xiv:1709.07191
    125 Xiong S,Produit N,Wu B.Expected performance of a hard X-ray polarimeter(POLAR)by Monte Carlo simulation.Nucl Instrum Methods Phys Res A,2009,606:552-559
    126 Xiong S,Wang Y,Li Z,et al.Overview of the GRB observation by POLAR.Int Cosmic Ray Conf,2017,301:640-647
    127 Li T P.Science with the hard X-Ray modulation telescope.Inter J Modern Phys D,2013,22:1360005
    128 Gotz D,Paul J,Basa S,et al.SVOM:A new mission for gamma-ray burst studies.Am Institut Phys Confer Series,2009,1133:25-30
    129 Yuan W,Osborne J,Zhang C,et al.Exploring the dynamic X-ray universe:Scientific opportunities for the Einstein probe mission.Chin J Space Sci,2016,36:117-138
    130 Zhang S N,Feroci M,Santangelo A,et al.e XTP:Enhanced X-ray timing and polarization mission.Space Tele Instrum 2016:Ultrav Gamma Ray,2016,9905:99051Q

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700