高压下微波催化湿式氧化技术降解苯酚类废水
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Treatment of phenol wastewater by microwave catalytic wet oxidation under high pressure
  • 作者:薛超 ; 毛岩鹏 ; 王文龙 ; 宋占龙 ; 赵希强 ; 孙静 ; 王延相
  • 英文作者:XUE Chao;MAO Yanpeng;WANG Wenlong;SONG Zhanlong;ZHAO Xiqiang;SUN Jing;WANG Yanxiang;National Engineering Laboratory of Coal-fired Pollutants Emission Reduction,Shandong University;School of Material Science & Engineering,Shandong University;
  • 关键词:微波 ; 湿式氧化 ; 高压 ; 废水 ; 高能位点 ; 反应动力学 ; 自由基
  • 英文关键词:microwave;;wet oxidation;;high pressure;;wastewater;;high energy site;;reaction kinetics;;radical
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:山东大学燃煤污染物减排国家工程实验室;山东大学材料科学与工程学院;
  • 出版日期:2018-12-04 14:36
  • 出版单位:化工学报
  • 年:2018
  • 期:v.69
  • 基金:山东省自然科学基金项目(ZR2018MEE030);; 国家自然科学基金项目(51506116,51576118);; 山东大学基本科研业务费专项资金资助项目(2016JC004)~~
  • 语种:中文;
  • 页:HGSZ2018S2032
  • 页数:8
  • CN:S2
  • ISSN:11-1946/TQ
  • 分类号:220-227
摘要
针对高压微波催化湿式氧化技术(MW-CWPO)降解苯酚类废水进行了研究,实验设计了一种耐高压微波催化实验系统,选择对硝基苯酚(100 mg/L)为目标污染物,使用多壁碳纳米管和过氧化氢分别作为催化剂和氧化剂,研究发现高功率、高压、高浓度的催化剂和氧化剂均能有效促进对硝基苯酚的降解,并且在某些特定条件下(800 W,0.3 MPa)反应5 min后其降解率可以达到100%。此外,实验发现在优化条件下该技术对实际印染废水也有着很好的处理效果,上述研究结论可应用于实际工业生产中,通过人为控制压力、微波功率等因素以加速化学反应从而提高实际化工废水的降解率,实现污染物的降解和资源的可持续化利用。
        Traditional technology of wet oxidation was often carried out under the situation of high temperature and pressure,which results in low efficiency of the reaction,serious wear of the reactor and harsh reaction conditions.And the degradation rate and efficiency was often under at a lower level.The objective of this study was to elucidate the mechanism degrading wastewater by using MW-CWPO,in which the production of hydroxyl radicals can be promoted,and hence improves the degradation of pollutants under relatively gentle conditions.In this research,p-nitro phenol(100 mg/L) was used as target pollutant,and carbon nanotubes and hydrogen peroxides were used as catalysts and auxiliary oxidant.It is investigated that the high power,high pressure,and high concentration of catalyst and oxidant can effectively improve the degradation efficiency of organic wastewater.Besides,it was found that MW radiation can promote hot spot(exceed 1000℃) formation on the surface of catalysts,which can enhance hydroxyl generation by the decomposition of oxidizers and dissolved oxygen at the condition of high temperature.Additionally,the catalysts after reaction were scanned by electron microscope and find that the surface of the carbon nanotube used in the experiment had no apparent modification,so that it can be reused for a long time.Since factors such as pressure can enhance the degradation rate of organic wastewater,they can be controllably modified to accelerate chemical reactions or improve degradation rate of actual chemical industry wastewater.
引文
[1]DENG J,LI S,ZHOU Y,et al.Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co(hexagonal and cubic phases)through interfacial polarizations[J].J.Colloid Interface Sci.,2018,509:406-413.
    [2]DU J,LIU S,LV S,et al.Absorbing mechanism analysis for a resonant microwave absorber[J].Materials Technology,2013,21(1):31-34.
    [3]JU Y,LIU R,TAN X,et al.Mechanism for the elimination of pollutants from aqueous solutions adopting NiR2O4(R=Fe,Cr and Al)with microwave energy[J].Separation and Purification Technology,2016,170:57-67.
    [4]MISHRA R R,SHARMA A K.Microwave-material interaction phenomena:heating mechanisms,challenges and opportunities in material processing[J].Composites Part A:Applied Science and Manufacturing,2016,81:78-97.
    [5]MENG F,WANG H,HUANG F,et al.Graphene-based microwave absorbing composites:a review and prospective[J].Composites Part B:Engineering,2018,137:260-277.
    [6]ANZULEVICH A P,BUTKO L N,BYCHKOV I V,et al.Dynamic magnetic losses in powders consisting of metallized dielectric particles at microwaves[J].Journal of Magnetism and Magnetic Materials,2017,444:307-312.
    [7]KAUR T,KUMAR S,NARANG S B,et al.Radiation losses in microwave Ku region by conducting pyrrole/barium titanate and barium hexaferrite based nanocomposites[J].Journal of Magnetism and Magnetic Materials,2016,420:336-342.
    [8]CHANG S H,WANG K S,LIANG H H,et al.Treatment of reactive black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process[J].J.Hazard.Mater.,2010,175(1/2/3):850-857.
    [9]CHEN J,XUE S,SONG Y,et al.Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution[J].J.Hazard.Mater.,2016,310:226-234.
    [10]DALAL J,GUPTA A,LATHER S,et al.Poly(3,4-ethylene dioxythiophene)laminated reduced graphene oxide composites for effective electromagnetic interference shielding[J].Journal of Alloys and Compounds,2016,682:52-60.
    [11]AGATONOVIC-KUSTRIN S,KUSTRIN E,MORTON D W.Phenolic acids contribution to antioxidant activities and comparative assessment of phenolic content in mango pulp and peel[J].South African Journal of Botany,2018,116:158-163.
    [12]ALHARBI O M L.Sorption,kinetic,thermodynamics and artificial neural network modelling of phenol and 3-amino-phenol in water on composite iron nano-adsorbent[J].Journal of Molecular Liquids,2018,260:261-269.
    [13]BEN MOSHE S,RYTWO G.Thiamine-based organoclay for phenol removal from water[J].Applied Clay Science,2018,155:50-56.
    [14]DUAN W,MENG F,CUI H,et al.Ecotoxicity of phenol and cresols to aquatic organisms:a review[J].Ecotoxicol.Environ.Saf.,2018,157:441-456.
    [15]FARIDI ESFANJANI A,ASSADPOUR E,JAFARI S M.Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers[J].Trends in Food Science&Technology,2018,76:56-66.
    [16]QASEMI M,AFSHARNIA M,ZAREI A,et al.Phenol removal from aqueous solution using Citrullus colocynthis waste ash[J].Data in Brief,2018,18:620-628.
    [17]REN L F,ADEEL M,LI J,et al.Phenol separation from phenol-laden saline wastewater by membrane aromatic recovery system-like membrane contactor using superhydrophobic/organophilic electrospun PDMS/PMMA membrane[J].Water Res.,2018,135:31-43.
    [18]WANG Y,ZHU Y,FANG C,et al.Effect of ammonia on gasification performances of phenol in supercritical water[J].Chemical Engineering Research and Design,2018,136:242-250.
    [19]BAROUTIAN S,SYED A M,MUNIR M T,et al.Effect of hydrodynamic mixing conditions on wet oxidation reactions in a stirred vessel reactor[J].Bioresour.Technol.,2018,262:333-337.
    [20]KAZANTSEV S O,LOZHKOMOEV A S,GLAZKOVA E A,et al.Preparation of aluminum hydroxide and oxide nanostructures with controllable morphology by wet oxidation of AlN/Al nanoparticles[J].Materials Research Bulletin,2018,104:97-103.
    [21]MASSA A,HERN NDEZ S,ANSALONI S,et al.Enhanced electrochemical oxidation of phenol over manganese oxides under mild wet air oxidation conditions[J].Electrochimica Acta,2018,273:53-62.
    [22]PACHUPATE N J,VAIDYA P D.Catalytic wet oxidation of quinoline over Ru/C catalyst[J].Journal of Environmental Chemical Engineering,2018,6(1):883-889.
    [23]RASHWAN W E,FATHY N A,ELKHOULY S M.A novel catalyst of ceria-nanorods loaded on carbon xerogel for catalytic wet oxidation of methyl green dye[J].Journal of the Taiwan Institute of Chemical Engineers,2018,88:234-242.
    [24]STUTZENSTEIN P,WEINER B,K HLER R,et al.Wet oxidation of process water from hydrothermal carbonization of biomass with nitrate as oxidant[J].Chemical Engineering Journal,2018,339:1-6.
    [25]SUAREZ-IGLESIAS O,URREA J L,OULEGO P,et al.Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation.A review[J].Sci.Total Environ.,2017,584/585:921-934.
    [26]ZHANG Z,BAROUTIAN S,MUNIR M T,et al.Variation in metals during wet oxidation of sewage sludge[J].Bioresour.Technol.,2017,245(Pt A):234-241.
    [27]HORIKOSHI S,OSAWA A,SAKAMOTO S,et al.Control of microwave-generated hot spots(Ⅴ):Mechanisms of hot-spot generation and aggregation of catalyst in a microwave-assisted reaction in toluene catalyzed by Pd-loaded AC particulates[J].Applied Catalysis A:General,2013,460/461:52-60.
    [28]SADONES N,VAN BEVER E,ARCHER J R,et al.Microwave-assisted on-spot derivatization for gas chromatographymass spectrometry based determination of polar low molecular weight compounds in dried blood spots[J].J.Chromatogr.A,2016,1465:175-183.
    [29]ANIA C O,PARRA J B,MENENDEZ J A,et al.Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals[J].Water Res.,2007,41(15):3299-3306.
    [30]GARCIA-COSTA A L,ZAZO J A,RODRIGUEZ J J,et al.Microwave-assisted catalytic wet peroxide oxidation.Comparison of Fe catalysts supported on activated carbon and gamma-alumina[J].Applied Catalysis B:Environmental,2017,218:637-642.
    [31]LIU C,MA X.Study on the mechanism of microwave modified wheat protein fiber to improve its mechanical properties[J].Journal of Cereal Science,2016,70:99-107.
    [32]ZHENG Y L,ZHANG Q B,ZHAO J.Effect of microwave treatment on thermal and ultrasonic properties of gabbro[J].Applied Thermal Engineering,2017,127:359-369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700