驯化水温及温升速率对三门湾三种虾蟹类热耐受性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of the acclimation temperature and warming rate on three common crustaceans in Sanmen Bay, the East China Sea
  • 作者:田洪林 ; 曹亮 ; 刘金虎 ; 窦硕增
  • 英文作者:TIAN Hong-lin;CAO Liang;LIU Jin-hu;DOU Shuo-zeng;CAS Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology;
  • 关键词:甲壳类 ; 热耐受性 ; 驯化水温 ; 最大临界温度 ; 24h高起始致死温度
  • 英文关键词:Crustaceans;;thermal tolerance;;acclimation temperature;;critical thermal maximum (CTM);;24-hour upper incipient lethal temperature(24-h UILT50)
  • 中文刊名:HYKX
  • 英文刊名:Marine Sciences
  • 机构:中国科学院海洋研究所中国科学院海洋生态与环境科学重点实验室;中国科学院大学;青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室;
  • 出版日期:2018-04-15
  • 出版单位:海洋科学
  • 年:2018
  • 期:v.42;No.346
  • 基金:国家基金委-山东省联合基金项目(U1606404);; 国家科技重大专项(2013ZX06002001)~~
  • 语种:中文;
  • 页:HYKX201804006
  • 页数:10
  • CN:04
  • ISSN:37-1151/P
  • 分类号:45-54
摘要
作者采用动态实验法与静态实验法相结合的方法,研究了三门湾脊尾白虾(Exopalaemon carinicauda)、口虾蛄(Oratosquilla oratoria)和日本(Charybdis japonica)在不同季节的基础水温即驯化水温(8~29℃)和温升速率(0.5~15.0℃/h)下的热耐受能力。结果表明,驯化水温和温升速率对各实验动物的热耐受性均有显著影响。实验动物的热耐受性与驯化水温总体上呈显著正相关,而温升速率对热耐受性的影响具有物种特异性,并受驯化水温制约;在不同驯化水温下,各实验动物的热耐受性随温升速率增大呈不同变化趋势。各实验动物的24 h高起始致死温度受驯化水温的影响显著,随着驯化水温从8℃升高到29℃,脊尾白虾、日本和口虾蛄的24hUILT50分别从24.2、34.6、24.9℃显著增大到35.3、37.4和34.4℃。结合3种实验动物的最大临界温度分析,它们的热耐受能力依次为:日本>脊尾白虾>口虾蛄。研究结果可为探究三门湾水域潜在的热污染状况及其生态环境效应提供科学依据。
        This study aimed to investigate the effects of the acclimation temperature(8–29℃) and warming rate(0.5–15℃/h) on the thermal tolerance of three common marine crustaceans(Exopalaemon carinicauda, Charybdis japonica, and Oratosquilla oratoria) in Sanmen Bay, the East China Sea. We measured the critical thermal maximum(CTM) and 24-hour upper incipient lethal temperature(24-h UILT50) using the dynamic and static methods, respectively. The findings revealed that both the acclimation temperature and warming rate markedly affected the thermal tolerance of the experimental crustaceans. The thermal tolerance of each species increased with the increasing acclimation temperature. In addition, patterns how warming rate affected the CTM of the experimental crustaceans depended on the acclimation temperature. As the acclimation temperature increased from 8℃ to 29℃, the 24-h UILT50 of E. carinicauda, C. japonica, and O. oratoria markedly increased from 24.2℃, 34.6℃, and 24.9℃ to 35.3℃, 37.4℃, and 34.4℃, respectively. Overall, the thermal tolerance of the three experimental crustaceans revealed a ranking order of C. japonica > E. carinicauda > O. oratoria.
引文
[1]Arndt D S,Blunden J,Willett K M.State of the climate in 2015[J].Bulletin of the American Meteorological Society,2015,97(8):S1-S275.
    [2]冯琳,林霄沛.1945~2006年东中国海海表温度的长期变化趋势[J].中国海洋大学学报(自然科学版),2009,39(1):13-18.Feng Lin,Lin Xiaopei.Long-term trend of the East China Sea surface temperature during 1945-2006[J].Periodical of Ocean University of China,2009,39(1):13-18.
    [3]Rajadurai M,Poornima E H,Narasimhan S V,et al.Phytoplankton growth under temperature stress:Laboratory studies using two diatoms from a tropical coastal power station site[J].Journal of Thermal Biology,2005,30:299-305.
    [4]张惠荣,赵瀛,杨红,等.象山港滨海电厂温排水温升特征及影响效应研究[J].上海海洋大学学报,2013,22(2):274-281.Zhang Huirong,Zhao Ying,Yang Hong,et al.Study on the temperature rise characteristics and influence effects of thermal discharge from coastal power plant in Xiangshan Bay[J].Journal of Shanghai Ocean University,2013,22(2):274-281.
    [5]魏新渝,张琨,王韶伟,等.美国滨海核电厂温排水混合区的设置及启示[J].海洋科学,2017,41(8):53-63.Wei Xinyu,Zhang Kun,Wang Shaowei,et al.Insights on the development of thermal discharge mixing zones from U.S.nuclear power plants in coastal regions[J].Marine Sciences,2017,41(8):53-63.
    [6]Bamber R N.The influence of rising background temperature on the effects of marine thermal effluents[J].Journal of Thermal Biology,1995,20(l-2):105-110.
    [7]韩旭.滨海电厂温排水污染损害评估及生态补偿初步研究[D].上海:华东师范大学,2012.Han Xu.Preliminary study on damage assessment and ecological compensation of coastal power plant thermal discharge pollution[D].Shanghai:East China Normal University,2012.
    [8]沈国英,黄凌风,郭丰,等.海洋生态学(第三版)[M].北京:科学出版社,2010:54-57.Shen Guoying,Huang Lingfeng,Guo Feng,et al.Marine ecology(the third edition)[M].Beijing:Science Press,2010:54-57.
    [9]Roemmich D,McGowan J.Climatic warming and the decline of zooplankton in the California current[J].Science,1995,267(5202):1324-1326.
    [10]August S M,Hicks B J.Water temperature and upstream migration of glass eels in New Zealand:implications of climate change[J].Environmental Biology of Fishes,2008,81(2):195-205.
    [11]Byrne M,Ho M,Selvakumaraswamy P,et al.Temperature,but not pH,compromises sea urchin fertilization and early development under near-future climate change scenarios[J].Proceedings of Biological Science,2009,276:1883-1888.
    [12]Yao C L,Somero G N.The impact of acute temperature stress on hemocytes of invasive and native mussels(Mytilus galloprovincialis and Mytilus californianus):DNA damage,membrane integrity,apoptosis and signaling pathways[J].Journal of Experimental Biology,2012,215:4267-4277.
    [13]Yao C L,Somero G N.Thermal stress and cellular signaling processes in hemocytes of native(Mytilus californianus)and invasive(Mytilus galloprovincialis)mussels:Cell cycle regulation and DNA repair[J].Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology,2013,165:159-168.
    [14]Lutterschmidt W I,Hutchison V H.The critical thermal maximum:history and critique[J].Canadian Journal of Zoology,1997,75:1561-1574.
    [15]Mora C,Ospina A F.Tolerance to high temperatures and potential impact of sea warming on reef fishes of Gorgona Island(tropical eastern Pacific)[J].Marine Biology,2001,139:765-769.
    [16]Rajaguru S,Ramachandra S.Temperature tolerance of some estuarine fishes[J].Journal of Thermal Biology,2001,26:41-45.
    [17]Brett J R.Some principles in the thermal requirements of fishes[J].The Quarterly Review of Biology,1956,31(2):75-87.
    [18]Bennett W A,Beitinger T L.Temperature tolerance of the sheepshead minnow,Cyprinodon variegatus[J].Copeia,1997,1:77-87.
    [19]Vinagre C,Leal I,Mendon?a V.Effect of warming rate on the critical thermal maxima of crabs,shrimp and fish[J].Journal of Thermal Biology,2015,47:19-25.
    [20]丁跃平,郭远明,李铁军,等.三门湾春季温排水增温效应数值模拟研究[J].海洋科学,2015,39(4):101-107.Ding Yueping,Guo Yuanming,Li Tiejun,et al.The numerical simulation studies of the effect of increasing temperature on warmly discharged water in Sanmen bay[J].Marine sciences,2015,39(4):101-107.
    [21]Becker C D,Genoway R G.Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish[J].Environmental Biology of Fishes,1979,4(3):245-256.
    [22]Siikavuopio S I,Foss A,Saether B S,et al.Comparison of the growth performance of offspring from cultured versus wild populations of arctic charr,Salvelinus alpinus(L.),kept at three different temperatures[J].Aquaculture Research,2013,44:995-1001.
    [23]Roessig J M,Woodley C M,Cech J J,et al.Effects of global climate change on marine and estuarine fishes and fisheries[J].Reviews in Fish Biology and Fisheries,2004,14:251-275.
    [24]Vinagre C,Leal I,Mendonca V,et al.Vulnerability to climate warming and acclimation capacity of tropical and temperate coastal organisms[J].Ecological Indicators,2016,62:317-327.
    [25]崔雯婷,宋骏杰,田洪林,等.黄茅海五种常见海洋生物的热耐受性[J].水产学报,2018,42(4):522-533.Cui Wenting,Song Junjie,Tian Honglin,et al.The thermal tolerance of five common marine species in Huangmao Sea,the South China Sea[J].Journal of Fisheries of China,2018,42(4):522-533.
    [26]南鸥.石岛湾常见海洋生物的热耐受性研究[D].青岛:中国科学院海洋研究所,2017.Nan Ou.Study on the thermal tolerance of the common marine species in Shidao Bay,the Yellow Sea[D].Qingdao:Institute of Oceanology,Chinese Academy of Sciences,2017.
    [27]P?rtner H O,Peck M A.Climate change effects on fishes and fisheries:Towards a cause-and-effect understanding[J].Journal of Fish Biology,2010,77:1745-1779.
    [28]He Y F,Wu X B,Zhu Y J,et al.Effect of rearing temperature on growth and thermal tolerance of Schizothorax(Racoma)kozlovi larvae and juveniles[J].Journal of Thermal Biology,2014,46:24-30.
    [29]Kir M,Kumlu M.Effect of temperature and salinity on low thermal tolerance of Penaeus semisulcatus(Decapoda:Penaeidae)[J].Aquaculture Research,2008,39:1101-1106.
    [30]?apińska E,Szaniawska A.Environmental preferences of Crangon crangon(Linnaeus,1758),Palaemon adspersus Rathke,1837,and Palaemon elegans Rathke,1837 in the littoral zone of the Gulf of Gdańsk[J].Crustaceana,2006,79(6):649-662.
    [31]Cumillaf J P,Blanc J,Paschke K,et al.Thermal biology of the sub-polar-temperate estuarine crab Hemigrapsus crenulatus(Crustacea:Decapoda:Varunidae)[J].Biology Open,2016,5:220-228.
    [32]Ern R,Huong D T T,Phuong N T,et al.Some like it hot:Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans[J].Scientific Reports,2015,5:11.
    [33]Re A D,Diaz F,Sierra E,et al.Effect of salinity and temperature on thermal tolerance of brown shrimp Farfantepenaeus aztecus(Ives)(Crustacea,Penaeidae)[J].Journal of Thermal Biology,2005,30:618-622.
    [34]Rezende E L,Casta?eda L E,Santos M.Tolerance landscapes in thermal ecology[J].Functional Ecology,2014,28:799-809.
    [35]夏继刚,蔡瑞钰,吕潇,等.升温/降温速率和驯化模式对斑马鱼及孔雀鱼热耐受性测定的影响[J].生态学杂志,2016,35(8):2170-2174.Xia Jigang,Cai Ruiyu,Lv Xiao,et al.The effects of heating/cooling rate and acclimation mode on the determination of thermal tolerance of zebrafish(Danio rerio)and guppy(Poecilia reticulata)[J].Chinese Journal of Ecology,2016,35(8):2170-2174.
    [36]窦硕增,南鸥,曹亮,等.石岛湾四种常见鱼类的热耐受性比较研究[J].海洋科学,2017,41(9):56-64.Dou Shuozeng,Nan Ou,Cao Liang,et al.A comparative study of the thermal tolerance of four common fish species in Shidao Bay,the Yellow Sea[J].Marine Sciences,2017,41(9):56-64.
    [37]Kir M,Sunar M C,Altindag B C.Thermal tolerance and preferred temperature range of juvenile meagre acclimated to four temperatures[J].Journal of Thermal Biology,2017,65:125-129.
    [38]Beitinger T L,Bennett W A,Mccauley R W.Temperature tolerances of north American freshwater fishes exposed to dynamic changes in temperature[J].Environmental Biology of Fishes,2000,58(3):237-275.
    [39]Lutterschmidt W I,Hutchison V H.The critical thermal maximum:data to support the onset of spasms as the definitive end point[J].Canadian Journal of Zoology,1997,75:1553-1560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700