龙门山断裂带金河磷矿剖面断层泥的低速至高速摩擦性质研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Low-to high-velocity frictional properties of the Longmenshan fault gouges retrieved from the Jinhe shallow drilling cores
  • 作者:李晓慧 ; 姚路 ; 马胜利 ; 杨晓松
  • 英文作者:LI XiaoHui;YAO Lu;MA ShengLi;YANG XiaoSong;State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration;
  • 关键词:低速至高速摩擦性质 ; BET比表面积 ; 地震断层运动中的能量分配 ; 动态弱化 ; 龙门山断裂带 ; 汶川地震
  • 英文关键词:Low-to high-velocity frictional properties;;BET surface area;;Energetics of seismic fault motion;;Dynamic weakening;;Longmenshan fault zone;;Wenchuan earthquake
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:中国地震局地质研究所地震动力学国家重点实验室;
  • 出版日期:2018-05-15
  • 出版单位:地球物理学报
  • 年:2018
  • 期:v.61
  • 基金:地震动力学国家重点实验室自主研究课题(LED2014A06);; 开放基金课题(LED2016B04);; 国家自然科学基金(41404143)项目共同资助
  • 语种:中文;
  • 页:DQWX201805007
  • 页数:17
  • CN:05
  • ISSN:11-2074/P
  • 分类号:95-111
摘要
本文对龙门山断裂带金河磷矿浅钻岩芯中的三种断层泥开展了低速到高速摩擦滑动的实验研究,并对实验变形样品开展了BET比表面积研究.摩擦实验在干燥和孔隙水压条件下开展,速率范围涵盖20μm·s~(-1)~1.4m·s~(-1).实验结果显示,三种断层泥在干燥条件下的摩擦性质差别不大,但在孔隙水压条件下,三者的中低速摩擦强度与层状硅酸盐矿物的种类而非总含量紧密相关,蒙脱石和伊利石相比绿泥石更能有效地弱化断层.三种断层泥在孔隙水压条件下存在中低速率域的速度强化,暗示着对断层的加速滑动存在一定的阻碍作用.孔隙水压下,黄绿色和灰绿色断层泥的初始动态弱化非常迅速并伴随断层泥层的瞬时扩容,凹凸体急剧加热导致的局部热压作用可能是造成这种力学行为的物理机制.在经历高速滑动之后,三种断层泥在干、湿条件下的BET比表面积都显著降低,暗示着可能发生了颗粒烧结.中低速域内,孔隙水的存在使得断层泥呈现分散式的剪切变形,BET比表面积的增加因此比干燥条件下更加明显.对表面能的估算表明,颗粒磨碎所消耗的能量至多不超过摩擦力做功的8%,暗示着断层作用中颗粒磨碎所占的能量比例较低.
        In this study,low-to high-velocity friction experiments were conducted on the three kinds of fault gouges retrieved from the shallow drilling hole penetrating the Longmenshan fault zone near Jinhe outcrop.BET surface area of the experimentally deformed samples was also studied to constrain the energetics of grain crushing during frictional slip.The friction experiments were performed under both room dry and pore pressure conditions,at slip rates ranging from 20μm·s~(-1) to 1.4 m·s~(-1).Results show that the frictional properties of the three gouges are similar under dry condition.However,under pore pressure condition,the frictional strength of the three gouges atlow-to intermediate-velocities is closely related to the types rather than total contents of clay minerals—smectite and illite could lower gouge friction more effectively than chlorite.All the three gouges show velocity strengthening at low-to intermediate-velocity regime,suggesting a mechanical barrier to accelerating slip during seismic rupture propagation.The yellow-greenish and gray-greenish gouges both show extremely rapid dynamic weakening that is contemporaneous with transient dilatancy of gouge layers at the slip rate of 1.4 m·s~(-1) under pore pressure condition.Local fluid pressurization triggered by flash heating probably could explain such mechanical behavior.At the high slip rate of 1.4 m·s~(-1),the three gouges show clear reduction in BET surface area under both dry and wet conditions,suggesting the occurrence of grain sintering.At the lowto intermediate-velocity regime,the presence of pore water tends to distribute the shear deformation within the entire gouge layer,making more increases in BET surface area in wet samples than that in dry samples.Moreover,surface energy estimates reveal that the energy consumed by grain crushing is less than 8% of the frictional work in all the friction experiments,suggesting the energy partition for grain crushing is small during seismic faulting.
引文
Brace W F,Walsh J B.1962.Some direct measurements of the surface energy of quartz and orthoclase.American Mineralogist,47:1111-1122.
    Brantut N,Schubnel A,Guéguen Y.2011.Damage and rupture dynamics at the brittle-ductile transition:The case of gypsum.Journal of Geophysical Research Solid Earth,116(B1),doi:10.1029/2010JB007675.
    Chen J,Niemeijer A,Yao L,et al.2017.Water vaporization promotes coseismic fluid pressurization and buffers temperature rise.Geophysical Research Letters,44(5):2177-2185,doi:10.1002/2016GL071932.
    Chen J Y,Yang X S,Dang J X,et al.2011.Internal structure and permeability of Wenchuan earthquake fault.Chinese Journal of Geophysics(in Chinese),54(7):1805-1816,doi:10.3969/j.issn.0001-5733.2011.07.014.
    Chen J Y,Yang X S,Duan Q B,et al.2013a.Importance of thermochemical pressurization in the dynamic weakening of the Longmenshan Fault during the 2008Wenchuan earthquake:Inferences from experiments and modeling.Journal of Geophysical Research:Solid Earth,118(8):4145-4169,doi:10.1002/jgrb.50260.
    Chen J Y,Yang X S,Ma S L,et al.2013b.Mass removal and clay mineral dehydration/rehydration in carbonate-rich surface exposures of the 2008Wenchuan Earthquake fault:Geochemical evidence and implications for fault zone evolution and coseismic slip.Journal of Geophysical Research:Solid Earth,118(2):474-496,doi:10.1002/jgrb.50089.
    Chen J Y,Yang X S.2014.Characteristics of particle size distribution of the Wenchuan Earthquake fault zone:Insights for cataclastic mechanisms.Seismology and Geology(in Chinese),36(2):368-379,doi:10.3969/j.issn.0253-4967.2014.02.008.
    Chester J S,Chester F M,Kronenberg A K.2005.Fracture surface energy of the Punchbowl fault,San Andreas system.Nature,437(7055):133-136.
    Dang J X,Zhou Y S,Han L,et al.2012.X-ray diffraction analysis result of co-seismic fault gouge in carbon mudstone at outcrops of Bajiaomiao and Shenxigou in Hongkou.Seismology and Geology(in Chinese),34(1):17-27,doi:10.3969/j.issn.0253-4967.2012.01.003.
    Di Toro G,Han R,Hirose T,et al.2011.Fault lubrication during earthquakes.Nature,471(7339):494-498,doi:10.1038/nature09838.
    Duan Q B,Yang S X.2014.Experimental studies on gas and water permeability of fault rocks from the rupture of the 2008 Wenchuan earthquake,China.Science China Earth Sciences,57(1):2825-2834,doi:10.1007/s11430-014-4948-7.
    Duan Q B,Yang X S,Ma S L,et al.2016.Fluid-rock interactions in seismic faults:Implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake,China.Tectonophysics,666:260-280,doi:10.1016/j.tecto.2015.11.008.
    Gregg S J,Sing K S W,Salzberg H W.1967.Adsorption surface area and porosity.Journal of the Electrochemical Society,114(11):279C,doi:10.1149/1.2426447.
    Han L,Zhou Y S,Chen J Y,et al.2010.Structural characters of co.sesimic fault gouge in bed rocks during the Wenchuan Earthquake.Quaternary Sciences(in Chinese),30(4):745-758,doi:10.3969/j.issn.1001-7410.2010.04.10.
    Hou L F,Ma S L,Shimamoto T,et al.2012.Internal structures and high-velocity frictional properties of a bedding-parallel carbonate fault at Xiaojiaqiao outcrop activated by the 2008Wenchuan earthquake.Earthquake Science,25(3):197-217,doi:10.1007/s11589-012-0846-2.
    Kanamori H,Brodsky E E.2004.The physics of earthquakes.Reports on Progress in Physics,67(8):1429-1496.
    Kuo L W,Li H B,Smith S A F,et al.2014.Gouge graphitization and dynamic fault weakening during the 2008 MW7.9Wenchuan earthquake.Geology,42(1):47-50,doi:10.1130/G34862.1.
    Li H B,Wang H,Xu Z Q,et al.2013.Characteristics of the faultrelated rocks,fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1(WFSD-1).Tectonophysics,584:23-42,doi:10.1016/j.tecto.2012.08.021.
    Li H B,Xu Z Q,Niu Y X,et al.2014.Structural and physical property characterization in the Wenchuan earthquake Fault Scientific Drilling project-hole 1(WFSD-1).Tectonophysics,619-620:86-100,doi:10.1016/j.tecto.2013.08.022.
    Liu A,Ba X W,Liu Y,et al.2012.Solid specific surface area measurement with BET capacity method.Journal of Changchun University of Technology(Natural Science Edition)(in Chinese),33(2):197-199,doi:10.3969/j.issn.1674-1374-B.2012.02.018.
    Liu D L,Li H B,Lee T Q,et al.2014.Primary rock magnetism for the Wenchuan earthquake fault zone at Jiulong outcrop,Sichuan Province,China.Tectonophysics,619-620:58-69,doi:10.1016/j.tecto.2013.08.028.
    Liu Y,He C Y.2017.Frictional properties of a natural fault gouge from drilled cores in the Longmenshan fault zone cutting granitic rock.Seismology and Geology(in Chinese),39(5):917-933,doi:10.3969/j.issn.0253-4967.2017.05.004.
    Liu-Zeng J,Zhang Z,Wen L,et al.2009.Co-seismic ruptures of the 12May 2008,MS8.0Wenchuan earthquake,Sichuan:Eastwest crustal shortening on oblique,parallel thrusts along the eastern edge of Tibet.Earth and Planetary Science Letters,286(3-4):355-370.
    Ma K F,Tanaka H,Song S R,et al.2006.Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project.Nature,444(7118):473-476,doi:10.1038/nature05253.
    Ma S L,Shimamoto T,Yao L,et al.2014.A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates.Earthquake Science,27(5):469-497,doi:10.1007/s11589-014-0097-5.
    Ma Y W,Wang G Z,Hu X W.1996.Tectonic deformation of Pengguan complex as a nappe.Acta Geologica Sichuan(in Chinese),16(2):110-114.
    Mizoguchi K,Hirose T,Shimamoto T,et al.2007.Reconstruction of seismic faulting by high-velocity friction experiments:An example of the 1995 Kobe earthquake.Geophysical Research Letters,34(1):L01308,doi:10.1029/2006GL027931.
    Nakai K,Sonoda J,Iegami H,et al.2005.High precision volumetric gas adsorption apparatus.Adsorption,11(S1):227-230,doi:10.1007/s10450-005-5928-1.
    Niemeijer A,Di Toro G,Griffith W A,et al.2012.Inferring earthquake physics and chemistry using an integrated field and laboratory approach.Journal of Structural Geology,39:2-36,doi:10.1016/j.jsg.2012.02.018.
    Renard F,Ortoleva P.1997.Water films at grain-grain contacts:Debye-Hückel,osmotic model of stress,salinity,and mineralogy dependence.Geochimica et Cosmochimica Acta,61(10):1963-1970,doi:10.1016/S0016-7037(97)00036-7.
    Rockwell T,Sisk M,Girty G,et al.2009.Chemical and physical characteristics of pulverized Tejon Lookout Granite adjacent to the San Andreas and Garlock faults:Implications for earthquake physics.Pure and Applied Geophysics,166(10-11):1725-1746,doi:10.1007/s00024-009-0514-1.
    Sawai M,Shimamoto T,Togo T.2012.Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes.Journal of Structural Geology,38:117-138,doi:10.1016/j.jsg.2012.01.002.
    Scholz C H.2002.The mechanics of earthquakes and faulting.Cambridge university press.
    Shimamoto T,Tsutsumi A.1994.A new rotary-shear high-speed frictional testing machine:its basic design and scope of research(in Japenese with English abstract).Jour.Tectonic Res.Group of Japan,39:65-78.
    Storti F,Balsamo F.2010a.Impact of ephemeral cataclastic fabrics on laser diffraction particle size distribution analysis in loose carbonate fault breccia.Journal of Structural Geology,32(4):507-522,doi:10.1016/j.jsg.2010.02.006.
    Storti F,Balsamo F.2010b.Particle size distributions by laser diffraction:Sensitivity of granular matter strength to analytical operating procedures.Solid Earth,1(1):25-48.
    Togo T,Shimamoto T,Ma S L,et al.2011a.Internal structure of Longmenshan fault zone at Hongkou outcrop,Sichuan,China,that caused the 2008 Wenchuan earthquake.Earthquake Science,24(3):249-265,doi:10.1007/s11589-011-0789-z.
    Togo T,Shimamoto T,Ma S L,et al.2011b.High-velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake.Earthquake Science,24(3):267-281,doi:10.1007/s11589-011-0790-6.
    Togo T,Shimamoto T.2012.Energy partition for grain crushing in quartz gouge during subseismic to seismic fault motion:An experimental study.Journal of Structural Geology,2012,38:139-155,doi:10.1016/j.jsg.2011.12.014.
    Togo T,Yao L,Ma S L,et al.2016.High-velocity frictional strength of Longmenshan fault gouge and its comparison with an estimate of friction from the temperature anomaly in WFSD-1drill hole.Journal of Geophysical Research:Solid Earth,121(7):5328-5348,doi:10.1002/2016JB012880.
    Verberne B A,He C R,Spiers C J.2010.Frictional properties of sedimentary rocks and natural fault gouge from the Longmen Shan Fault Zone,Sichuan,China.Bulletin of the Seismological Society of America,100(5B):2767-2790,doi:10.1785/0120090287.
    Wang H,Li H B,Si J L,et al.2014a.Internal structure of the Wenchuan earthquake fault zone,revealed by surface outcrop and WFSD-1drilling core investigation.Tectonophysics,619-620:101-114,doi:10.1016/j.tecto.2013.08.029.
    Wang Y,Ma S L,Shimamoto T,et al.2014b.Internal structures and high-velocity frictional properties of Longmenshan fault zone at Shenxigou activated during the 2008 Wenchuan earthquake.Earthquake Science,27(5):499-528,doi:10.1007/s11589-014-0096-6.
    Xu X W,Wen X Z,Yu G H,et al.2009.Coseismic reverse-and oblique-slip surface faulting generated by the 2008 MW7.9Wenchuan earthquake,China.Geology,37(6):515-518,doi:10.1130/g25462a.1.
    Yang T,Chen J Y,Wang H Q,et al.2012a.Magnetic properties of fault rocks from the Yingxiu-Beichuan fault:Constraints on temperature rise within the shallow slip zone during the 2008Wenchuan earthquake and their implications.Journal of Asian Earth Sciences,50:52-60,doi:10.1016/j.jseaes.2012.01.013.
    Yang T,Chen J Y,Wang H Q,et al.2012b.Rock magnetic properties of fault rocks from the rupture of the 2008Wenchuan earthquake,China and their implications:Preliminary results from the Zhaojiagou outcrop,Beichuan County(Sichuan).Tectonophysics,530-531:331-341,doi:10.1016/j.tecto.2012.01.019.
    Yao L,Ma S L.2013.Experimental simulation of coseismic fault sliding-significance,technological methods and research progress of high-velocity frictional experiments.Progress in Geophysics(in Chinese),28(2):607-623,doi:10.6038/pg20130210.
    Yao L,Ma S L,Shimamoto T,et al.2013a.Structures and highvelocity frictional properties of the Pingxi fault zone in the Longmenshan fault system,Sichuan,China,activated during the 2008 Wenchuan earthquake.Tectonophysics,599:135-156,doi:10.1016/j.tecto.2013.04.011.
    Yao L,Shimamoto T,Ma S L,et al.2013b.Rapid postseismic strength recovery of Pingxi fault gouge from the Longmenshan fault system:Experiments and implications for the mechanisms of high-velocity weakening of faults.Journal of Geophysical Research:Solid Earth,118(8):4547-4563,doi:10.1002/jgrb.50308.
    Yao L,Ma S L,Platt J D,et al.2016.The crucial role of temperature in high-velocity weakening of faults:Experiments on gouge using host blocks with different thermal conductivities.Geology,44(1):63-66,doi:10.1130/G37310.1.
    Yao L,Ma S,Shimamoto T,et al.2017.Local thermal pressurization triggered by flash heating causes dramatic weakening in watersaturated gouges at subseismic slip rates.∥European Geosciences Union,General Assembly,Vienna,EGU2017-10897.2017.
    Zhang L,He C R.2013.Frictional properties of natural gouges from Longmenshan fault zone ruptured during the Wenchuan MW7.9earthquake.Tectonophysics,594:149-164,doi:10.1016/j.tecto.2013.03.030.
    Zhang L,He C R.2014.Frictional properties of clay minerals and their effect on fault behavior.Progress in Geophysics(in Chinese),29(2):620-629,doi:10.6038/pg20140220.
    Zhang L,Liu Y W,Guo L S,et al.2014.Isotope geochemistry of mercury and its relation to earthquake in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1(WFSD-1).Tectonophysics,619-620:79-85,doi:10.1016/j.tecto.2013.08.025.
    Zhang P,Zhou Z Y,Xu C H,et al.2008.Geochemistry of Pengguan Complex in the Longmenshan region,western Sichuan Province,SW China:Petrogenesis and tectonic implications.Geotectonica et Metallogenia(in Chinese),32(1):105-116,doi:10.3969/j.issn.1001-1552.2008.01.014.
    Zhang P Z,Wen X Z,Shen Z K,et al.2010.Oblique,high-angle,listric-reverse faulting and associated development of strain:The Wenchuan earthquake of May 12,2008,Sichuan,China.Annual Review of Earth and Planetary Sciences,38(1):353-382,doi:10.1146/annurev-earth-040809-152602.
    Zhuang J H.2006.Physical Chemistry Experiments(in Chinese).3rd ed.Higher Education Press.
    陈建业,杨晓松,党嘉祥等.2011.汶川地震断层带结构及渗透率.地球物理学报,54(7):1805-1816,doi:10.3969/j.issn.0001-5733.2011.07.014.
    陈建业,杨晓松.2014.汶川地震断裂带粒度分布特征:对地震碎裂机制的约束.地震地质,36(2):368-379,doi:10.3969/j.issn.0253-4967.2014.02.008.
    党嘉祥,周永胜,韩亮等.2012.虹口八角庙-深溪沟炭质泥岩同震断层泥的X射线衍射分析结果.地震地质,34(1):17-27,doi:10.3969/j.issn.0253-4967.2012.01.003.
    段庆宝,杨晓松.2014.汶川地震断层岩气体和液体渗透率实验研究.中国科学:地球科学,44(10):2274-2284,doi:10.1007/s11430-014-4948-7.
    韩亮,周永胜,陈建业等.2010.汶川地震基岩同震断层泥结构特征.第四纪研究,30(4):745-758,doi:10.3969/j.issn.1001-7410.2010.04.10.
    柳翱,巴晓微,刘颖等.2012.BET容量法测定固体比表面积.长春工业大学学报(自然科学版),33(2):197-199,doi:10.3969/j.issn.1674-1374-B.2012.02.018.
    刘洋,何昌荣.2017.龙门山断层带浅钻花岗岩中断层泥的摩擦本构参数.地震地质,39(5):917-933,doi:10.3969/j.issn.0253-4967.2017.05.004.
    马永旺,王国芝,胡新伟.1996.“彭灌杂岩”推覆体的构造变形特征.四川地质学报,16(2):110-114.
    姚路,马胜利.2013.断层同震滑动的实验模拟---岩石高速摩擦实验的意义,方法与研究进展.地球物理学进展,28(2):607-623,doi:10.6038/pg20130210.
    张雷,何昌荣.2014.粘土矿物的摩擦滑动特性及对断层力学性质的影响.地球物理学进展,29(2):620-629,doi:10.6038/pg20140220.
    张沛,周祖翼,许长海等.2008.川西龙门山彭灌杂岩地球化学特征:岩石成因与构造意义.大地构造与成矿学,32(1):105-116,doi:10.3969/j.issn.1001-1552.2008.01.014.
    庄继华.2006.物理化学实验.3版.北京:高等教育出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700