反舰导弹舱内爆炸作用下舰船结构毁伤机理研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Advance of Damage Mechanism of Cabins under Warhead Internal Blast
  • 作者:李营 ; 张磊 ; 杜志鹏 ; 赵鹏铎 ; 周心桃 ; 刘建湖 ; 方岱宁
  • 英文作者:LI Ying;ZHANG Lei;DU Zhipeng;ZHAO Pengduo;ZHOU Xintao;LIU Jianhu;FANG Daining;Beijing Institute of Technology;Naval Research Academy;China Ship Development and Design Center;China Ship Scientific Research Center;
  • 关键词:反舰导弹 ; 舰船结构 ; 准静态压力 ; 舱内爆炸 ; 本构关系 ; 毁伤特性
  • 英文关键词:anti-ship missile;;cabins;;quasi-static pressure;;internal blast;;constitutive model;;damage characteristics
  • 中文刊名:ZGZC
  • 英文刊名:Shipbuilding of China
  • 机构:北京理工大学先进结构技术研究院;海军研究院;中国舰船设计研究中心;中国舰船科学研究中心;
  • 出版日期:2018-09-30
  • 出版单位:中国造船
  • 年:2018
  • 期:v.59;No.227
  • 基金:总装探索项目(7131512);; 国防基础研究基金(B1420133057);; 自然科学基金(11802030);; 海军预研项目(30205)
  • 语种:中文;
  • 页:ZGZC201803020
  • 页数:18
  • CN:03
  • ISSN:31-1497/U
  • 分类号:191-208
摘要
反舰导弹对水面舰艇最主要的攻击模式是它侵彻舷侧后在舱内爆炸。论文系统总结了在反舰导弹舱内爆炸作用下舰船舱室结构毁伤机理的研究进展,论述了两种最重要的舱内爆炸载荷—高速破片群和舱内爆炸压力,分析了船体材料本构关系和模型的发展历程,回顾了在爆炸载荷作用下舰船板/加筋板/舱室动态响应的规律和毁伤模式。最后提出了反舰导弹作用下舰船结构毁伤机理的研究建议。
        The most popular attack mode of anti-ship missile is internal blast after its penetrating the warship side. In this paper, research advance of damage mechanism of cabins under anti-ship missile internal blast was summarized, and two most important internal blast loads(high-speed fragments and internal blast pressure) were discussed. Development of constitutive relation of hull material and corresponding models were analyzed. Response of plates, stiffened plates and cabins to missile internal blast was reviewed. Finally, further researches of damage mechanism of cabins under anti-ship missile internal blast were proposed.
引文
[1]李营.反舰导弹舱内爆炸作用下舱室结构毁伤与防护机理[D].武汉:武汉理工大学,2017.
    [2]李营,张磊,赵鹏铎,等.舰船抗反舰导弹技术研究进展与发展路径[J].中国造船,2016,57(4):186-196.
    [3]MOTT N F.Fragmentation of shell cases[J].Mathematical and Physical and Engineering Science,1947:300-309.
    [4]MERCIER S,GRANIER N,MOLINARI A,et al.Multiple necking during the dynamic expansion of hemispherical metallic shells,from experiments to modelling[J].Journal of the Mechanics and Physics of Solids,2010,58:955-982.
    [5]RODRíGUEZ-MARTíNEZ J A,VADILLO G,ZAERA R,et al.On the complete extinction of selected imperfection wavelengths in dynamically expanded ductile rings[J].Mechanics of Materials,2013,60:107-120.
    [6]ZHANG H,RAVI-CHANDAR K.On the dynamics of necking and fragmentation-I.Real-time and post-mortem observations in Al 6061-O[J].Int J Fract,2006,142:183-217.
    [7]ZHANG H,RAVI-CHANDAR K.On the dynamics of necking and fragmentation-II.Effect of material properties,geometrical constraints and absolute size[J].Int J Fract,2008,150:3-36.
    [8]GRADY D E.Fragmentation of rings and shells:the legacy of NF mott[M].Berlin:Spring,2006.
    [9]汤铁钢谷岩,李庆忠,等.爆轰加载下金属柱壳膨胀破裂过程研究[J].爆炸与冲击,2003,23(6):529.
    [10]GRADY D E,BENSON D A.Fragmentation of metal rings by electromagnetic loading[J].Experimental Mechanics,1983,12:393-400.
    [11]胡八一,董庆东,韩长生,王德生,胡海波.内部爆轰加载下的钢管膨胀断裂研究[J].爆炸与冲击,1998,13(1):49-54.
    [12]李伟,朱锡,梅志远,等.战斗部破片毁伤能力的等级划分试验研究[J].振动与冲击,2008,27(3):47-52.
    [13]孔祥韶.爆炸载荷及复合多层防护结构响应特性研究[D].武汉:武汉理工大学,2013.
    [14]郑宇轩.韧性材料的动态碎裂特性研究[D].合肥:中国科技大学,2013.
    [15]MANJIT S,SUNEJA H R.Dynamic tensile deformation and fracture of metal cylinders at high strain rates[J].International Journal of Impact Enginerering,2002,27:939-954.
    [16]高重阳施,姚振汉,等.薄壁柱壳在内部爆炸载荷下膨胀断裂的研究[J].爆炸与冲击,2000,20(2):160-167.
    [17]RUSINEKA A,ZAERA R.Finite element simulation of steel ring fragmentation under radial expansion[J].International Journal of Impact Engineering,2007:799-822.
    [18]GOTO D M,BECKER R,ORZECHOWSKI T J,et al.Investigation of the fracture and fragmentation of explosively driven rings and cylinders[J].International Journal of Impact Engineering,2008,35:1547-1556.
    [19]李营,吴卫国,杜志鹏,等.基于修正BW模型的战斗部爆炸破片形成机理研究[J].振动与冲击,2017,36(15):118-123.
    [20]GERETTO C,YUEN S C K,NURICK G N.An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading[J].International Journal of Impact Engineering,2014:1-13.
    [21]EAMON C D.Reliability of concrete masonry unit walls subjected to explosive loads[J].Journal of Structural Engineerin,2007,133(7):935-944.
    [22]BAKER W E.Explosion hazards and evaluation[M].Elsevier Scientific Pub.Co,1983.
    [23]侯海量,朱锡,李伟,等.舱内爆炸冲击载荷特性实验研究[J].船舶力学,2010,14(8):901-907.
    [24]陈攀,刘志忠.舱室内爆冲击波载荷特性及影响因素分析[J].舰船科学技术,2016,38(2):43-48.
    [25]FELDGUN V R,KARINSKI Y S,EDRI I,et al.Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures[J].International Journal of Impact Engineering,2016,90:46-60.
    [26]舰船入级规范:军用载荷规范[S].英国:劳式船级社,2015.
    [27]TENG X,WIERZBICKI T.Effect of fracture criteria on high velocity perforation of thin beams[J].International Journal of Computational Methods,2004,01(01):171-200.
    [28]胡宏伟,宋浦,赵省向,等.有限空间内部爆炸研究进展[J].含能材料,2013,21(4):539-546.
    [29]ANDERSON J,CHARLES E,BAKER W E,et al.Quasi-static pressure,duration,and impulse for explosions(e.g.HE)in structures[J].International Journal of Mechanical Sciences,1983,25(6):455-464.
    [30]张晓伟,张庆明,施鹏,等.内爆炸条件下建筑物等效载荷研究[J].北京理工大学学报,2013,33(2):133-138.
    [31]DRAGOS J,WU C,OEHLERS D J.Simplification of fully confined blasts for structural response analysis[J].Engineering Structures,2013,56:312-326.
    [32]KURKI T.Contained explosion inside a naval vessel-evaluation of the structural response[D].Department of Mechanical Engineering,Helsinki University of Technology,2007.
    [33]李营,任广为,张玮,等.水介质对舱内爆炸抑制作用的实验研究[J].爆炸与冲击,2017,37(6):1-7.
    [34]王礼立.应力波基础[M].第二版.北京:国防工业出版社,2005.
    [35]KLEPACZKO J D M Z,et al.High velocity deformation of solids[M].Spring-Verlag Berlin,1978.
    [36]GR JOHNSON W C.A constitutive model and data for metals subjected to large strains,high strain rates and high temperature[C]//Proceedings of the Seventh International Symposium on Ballistics,Netherland.1983.
    [37]朱建士,胡锦棉,王裴,陈军,许爱国.爆炸与冲击动力学若干问题研究进展[J].力学进展,2010,40(4):400-423.
    [38]ZERILLI F J,ARMSTRONG R W.Disloeation-mechanics-based constitutive relations for material dynamics calculations,[J].Journal of Applied Physics,1987,61(5):1816-1825.
    [39]ZERILLI F J,ARMSTRONG R W.Description of tantalum deformation behavior by dislocation mechanics based constitutive relations[J].Journal of Applied Physics,1990,68(4):1580-1591.
    [40]ZERILLI F J,ARMSTRONG R W.The effects of dislocation drag on the stress-strain behavior of FCC metals[J].Acta Metal Mater,1992,40(8):1803-1808.
    [41]BURAKOVSKY,PRESTON L,DEAN L.Generalized Guinan-Steinberg formula for the shear modulus at all pressures[J].Physical Review B,2005,71(18).
    [42]朱锡.921A钢动态屈服应力的实验研究[J].海军工程学院学报,1991,2:43-48.
    [43]陈志坚,袁建红,赵耀.450 MPa级船用钢冲击实验研究及Cowper-Symonds本构模型[J].船舶力学,2007,11(6):933-941.
    [44]姜风春,刘瑞堂,张晓欣.船用945钢的动态力学性能研究[J].兵工学报,2000,21(3).
    [45]姜风春,刘瑞堂,刘殿奎.船用921A钢动态断裂韧性测试研究[J].实验力学,1999,14(1):96-101.
    [46]姚熊亮,徐小刚,许维军.船用917钢抗冲击性能试验[J].中国造船,2004,45(4):35-41.
    [47]李营,李晓彬,吴卫国.基于修正CS模型的船用低碳钢动态力学性能研究[J].船舶力学,2015,(8):944-949.
    [48]李营,汪玉,吴卫国,等.船用907 A钢的动态力学性能和本构关系[J].哈尔滨工程大学学报,2015,1:127-129.
    [49]李营,吴卫国,汪玉,等.基于修正CS模型的船用945钢冲击性能研究[J].中国造船,2014,55(3):94-100.
    [50]GURSON.Plastic flow and fracture behavior of ductile meterials incorporating void nucleation,growth and interaction[D].Brown University,1975.
    [51]JOHNSON G R,COOK.W H.Fracture characteristics of three metals subjected to various strains,strain rates,temperatures and pressures[J].Engineering Fracture Mechanics,1985,21:31-48.
    [52]BAO Y,WIERZBICKI T.On fracture locus in the equivalent strain and stress triaxiality space[J].International Journal of Mechanical Sciences,2004,46(1):81-98.
    [53]BAO Y,WIERZBICKI T.On the cut-off value of negative triaxiality for fracture[J].Engineering Fracture Mechanics,2005,72:1049-1069.
    [54]PAPASIDERO J,DOQUET V,MOHR D.Ductile fracture of aluminum 2024-T351 under proportional and non-proportional multi-axial loading:Bao-Wierzbicki results revisited[J].International Journal of Solids and Structures,2015.
    [55]BARSOUM I,FALESKOG J.Rupture mechanisms in combined tension and shear-Experiments[J].International Journal of Solids and Structures,2007,44:1768-1786.
    [56]BARSOUM I,FALESKOG J.Rupture mechanisms in combined tension and shear-micromechanics[J].International Journal of Solids and Structures,2007,44:5481-5498.
    [57]MIRONE G.Role of stress triaxiality in elastoplastic characterization and ductile failure prediction[J].Engineering Fracture Mechanics,2007,74:1203-1221.
    [58]BAI Y,WIERZBICKI T.A new model of metal plasticity and fracture with pressure and Lode dependence[J].International Journal of Plasticity,2008,24:1071-1096.
    [59]DUNAND M,MOHR D.On the predictive capabilities of the shear modified Gurson and the modified Mohr-Coulomb fracture models over a wide range of stresstriaxialities and Lode angles[J].Journal of the Mechanics and Physics of Solids,2011,59:1374-1394.
    [60]李营,吴卫国,朱海清,等.基于大范围应力三轴度的船用低碳钢断裂特性研究[J].中国造船,2016,57(219):54-64.
    [61]李营,杜志鹏,吴卫国,等.应力三轴度和Lode角的船用钢动态失效准则[J].哈尔滨工业大学学报,2017,49(10):153-157.
    [62]李营,吴卫国,张磊,等.基于多轴应力损伤的薄板花瓣型破口形成机理研究[J].爆炸与冲击,2017,37(3):554-549.
    [63]刘瑞堂,姜风春.船用907钢动态断裂韧性测试研究[J].哈尔滨工程大学学报,1998,19(4):19-23.
    [64]刘瑞堂,姜风春,张晓欣.船用945钢动态断裂行为的温度效应[J].实验力学,2001,16(1):113-118.
    [65]李晓彬,李营,郑元洲.基于低速Taylor杆实验的应力波效应对船用低碳钢损伤特性的影响[J].船舶力学,2014,(12):1495-1504.
    [66]JONES N.Structural impact[M].New York:Cambridge University Press,2012.
    [67]NURICK G N,MARTIN J B.Deformation of thin plates subjected to impulsive loading-A review:Part I:Theoretical considerations[J].International Journal of Impact Engineering,1989,8(2):159-170.
    [68]NURICK G N,MARTIN J B.Deformation of thin plates subjected to impulsive loading-A review.PartⅡexperimental study[J].International Journal of Impact Engineering,1989,8(2):171-186.
    [69]NURICK G N,SHAVE G C.The deformation and tearing of thin square plates subjected to impulsive loads-an experimental study[J].International Journal of Impact Engineering,1996,18(1):99-116.
    [70]NUICK G N,GELMAN M E,MARSHALL N S.Tearing of blast loaded plates with clamped boundary conditions[J].International Journal of Impact Engineering,1996,18(7-8):807-827.
    [71]RAMAJEYATHILAGAM K,VENDHAN C P.Deformation and rupture of thin rectangular plates to underwater shock[J].International Journal of Impact Engineering,2004,30:699-719.
    [72]NURICK G N,RADFORD A M.Deformation and tearing of clamped circular plates subjected to localised central blastloads[M]//Reddy B D.Recent Developments in Computational and Applied Mechanics.A volume in honour of John B.Martin.1997.:276-301.
    [73]RAJENDRAN R,NARASIMHAN K.Damage prediction of clamed circular plates subjected to contact underwater explosion[J].International Journal of Impact Engineering,2001,25(4):373-386.
    [74]JACOB N,YUEN S C K,NURICK G N.Scaling aspects of quadrangular plates subjected to localised blast loads-experiments and predictions[J].International Journal of Impact Engineering,2004,30:1179-1208.
    [75]BALDEN V H,NURICK G N.Numerical simulation of the post-failure motion of steel plates subjected to blast loading[J].International Journal of Impact Engineering,2005,32:14-34.
    [76]LONGèRE P,GEFFROY-GRèZE A G,LEBLéB,et al.Ship structure steel plate failure under near-field air-blast loading:Numerical simulations vs experiment[J].International Journal of Impact Engineering,2013,2013(62):88-98.
    [77]JACOB N,NURICK G N,LANGDON G S.The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads[J].Engineering Structures,2007,29:2723-2736.
    [78]余同希,陈发良.用“膜力因子法”分析简支刚塑性圆板的大挠度动力响应[J].力学学报,1990,5:555-565.
    [79]刘敬喜,刘尧,汤皓泉,等.爆炸载荷作用下单向加筋方板的大挠度塑性动力响应分析[J].振动与冲击,2011,4:182-187.
    [80]吴有生,彭兴宁,赵本立.爆炸载荷作用下舰船板架的变形与破损[J].中国造船,1995,4:55-61.
    [81]朱锡,冯刚,张振华.爆炸载荷作用下固支方板的应变场及破坏分析[J].船舶力学,2005,19(2):83-89.
    [82]LANGDON G S,SCHLEYER G K.Inelastic deformation and failure of profiled stainless steel blast wall panels.Part II:Analytical modelling considerations[J].International Journal of Impact Engineering,2005,31:371-399.
    [83]郑成,孔祥韶,吴卫国.爆炸载荷下矩形板弹塑性动态响应研究[J].中国造船,2015,56(3):20-31.
    [84]ZHENG C,KONG X S,WU W G,et al.The elastic-plastic dynamic response of stiffened plates under confined blast load[J].International Journal of Impact Engineering,2016,95:141-153.
    [85]WIERZBICKI T.Petalling of plates under explosive and impact loading[J].International Journal of Impact Engineering,1999,22:935-954.
    [86]LEE Y W,WIERZBICKI T.Fracture prediction of thin plates under localized impulsive loading.Part I:Dishing[J].International Journal of Impact Engineering,2005,31:1253-1276.
    [87]LEE Y W,WIERZBICKI T.Fracture prediction of thin plates under localized impulsive loading.Part II:Discing and petalling[J].International Journal of Impact Engineering,2005,31:1277-1308.
    [88]陈长海,朱锡,侯海量,等.近距空爆载荷作用下固支方板的变形及破坏模式[J].爆炸与冲击,2012,32(4):368-375.
    [89]陈长海,朱锡,侯海量,等.近距非接触空爆载荷作用下固支方板破口计算[J].哈尔滨工程大学学报,2012,33(5):601-606.
    [90]JOHNSON W.Impact strength of material[M].London:Hodder Arnold,1972.
    [91]ZHAO Y.Suggestion of a new dimensionless number for dynamic plastic response of beams and plates[J].Archive of Applied Mechanics,1998,68:524-538.
    [92]YAO S,ZHANG D,LU F.Dimensionless number for dynamic response analysis of box-shaped structures under internal blast loading[J].International Journal of Impact Engineering,2016,98:13-18.
    [93]YAO S,ZHANG D,LU F.Dimensionless numbers for dynamic response analysis of clamped square plates subjected to blast loading[J].Archive of Applied Mechanics,2015,85:735-744.
    [94]LANGDONA G S,YUENB S C K,NURICK G N.Experimental and numerical studies on the response of quadrangular stiffened plates.Part II:Localised blast loading[J].International Journal of Impact Engineering,2005,31:85-111.
    [95]YUEN S C K,NURICK G N.Experimental and numerical studies on the response of quadrangular stiffened plates.Part I:subjected to uniform blast load[J].International Journal of Impact Engineering,2005,31:55-83.
    [96]刘润泉,白雪飞,朱锡.舰船单元结构模型水下接触爆炸破口试验研究[J].海军工程大学学报,2001,13(5):41-47.
    [97]白雪飞,黄若波,刘润泉,等.船体板架在水下接触爆炸作用下的破口试验[J].中国造船,2003,44(1):46-52.
    [98]杜志鹏.大型水面舰船舷侧结构抗爆机理与仿真研究[D].上海:上海交通大学,2005.
    [99]侯海量,朱锡,梅志远.舱内爆炸载荷及舱室板架结构的失效模式分析[J].爆炸与冲击,2007,27(2):151-158.
    [100]于海洋,张世联,武少波,等.关于箱型梁结构提高舰船抗舱内爆炸可靠性水平的研究[J].振动与冲击,2014,(9):126-130.
    [101]王佳颖,张世联,武少波.舱内爆炸载荷下双层横舱壁设计初探[J].振动与冲击,2011,30(12):209-215.
    [102]PICKERD V,BORNSTEIN H,MCCARTHY P,et al.Analysis of the structural response and failure of containers subjected to internal blast loading[J].International Journal of Impact Engineering,2016,95:40-53.
    [103]侯海量,朱锡,李伟,等.爆炸冲击波和高速破片联合作用下舱室结构破坏模式试验研究//中国钢结构协会海洋钢结构分会学术会议暨理事会会议,2010.
    [104]LI Y,WU W,ZHU H,et al.The influence of different pre-formed holes on the dynamic response of square plates under air-blast loading[J].Engineering Failure Analysis,2017,78:122-133.
    [105]吴震.破片与冲击波对舰船板架的耦合毁伤效应研究[D].武汉:武汉理工大学,2016.
    [106]杜志鹏,吴震,柴勤芳,李营.破片与冲击波对固支方板的耦合毁伤效应数值研究[J].船舶力学,2017,21(5):595-600.
    [107]李帆.舰船舱室内爆炸破坏的数值模拟和实验研究[D].长沙:国防科学技术大学,2012.
    [108]杜志鹏.大型水面舰船舷侧结构抗爆机理与仿真研究[D].上海:上海交通大学,2005.
    [109]DISIMILE P J,DAVIS J,TOY N.Mitigation of shock waves within a liquid filled tank[J].International Journal of Impact Engineering,2011,38:61-72.
    [110]李营,吴卫国,郑元洲,等.舰船防护液舱吸收爆炸破片的机理[J].中国造船,2015,56(2):38-44.
    [111]李营,张磊,朱海清,等.爆炸破片在液舱中的速度衰减特性研究[J].中国造船,2016,57(1):127-137.
    [112]LEE M,LONGORIA R G,WILSON D E.Ballistic wave in high-speed water entry[J].Journal of Fluid and Structure,1997,11:819-844.
    [113]LEE M,LONGORIA R G,WILSON D E.Cavity dynamics in high-speed water entry[J].Phys Fluids,1997,9(3):540-550.
    [114]唐廷,朱锡,侯海量,等.高速破片在防雷舱结构中引起的冲击荷载的理论研究[J].振动与冲击,2013,6(3):12-15.
    [115]FOUREST T,LAURENS J M,DELETOMBE E.Analysis of bubbles dynamics created by hydrodynamic ram in confined geometries using the Rayleigh-Plesset equation[J].International Journal of Impact Engineering,2014,73(66-74).
    [116]FOUREST T,LAURENS J M,ERICDELETOMBE,et al.Confined Rayleigh-Plesset equation for hydrodynamic ram analysis in thin-walled containers under ballistic impacts[J].Thin-Walled Structures,2015,86:67-72.
    [117]张晓君,杜志鹏,谢永和.水下爆炸引起的水质点运动效应研究[J].浙江海洋学院学报(自然科学版),2012,31(2):161-164.
    [118]DELETOMBE E,FABIS J,DUPASN J,et al.Experimental analysis of 7.62mm hydrodynamic ram in containers[J].JournalofFluidsandStructures,2013,37:1-21.
    [119]VARAS D,LóPEZ-PUENTE J,ZAERA R.Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J].International Journal of Impact Engineering,2009,36(1):81-91.
    [120]VARAS D,ZAERA R,LóPEZ-PUENTE J.Numerical modelling of the hydrodynamic ram phenomenon[J].International Journal of Impact Engineering,2009,36(3):363-374.
    [121]VARAS D,ZAERA R,LóPEZ-PUENTE J.Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact[J].Composite Structures,2011,93(10):2598-2609.
    [122]VARAS D,ZAERA R,LóPEZ-PUENTE J.Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram[J].Aerospace Science and Technology,2012,16(1):19-28.
    [123]KAZUO SHIMAMURA T O.Study of water entry of high-speed projectile[J].Procedia Engineering,2013,58.
    [124]LECYSYN N,DANDRIEUXET A.Preliminary study of ballistic impact on an industrial tank:projectile velocity decay[J].Journal of Loss Prevention in the process Industries,2008,21:627-634.
    [125]LECYSYNA N,DANDRIEUX A,HEYMESA F.Ballistic impact on an industrial tank:study and modeling of consequences[J].Journal of Hazardous Materials,2009,172:587-594.
    [126]LECYSYN N,DANDRIEUX A.Experimental study of hydraulic ram effects on a liquid storage tank:analysis of overpressure and cavitation induced by a high-speed projectile[J].Journal of Hazardous Materials,2010,178:635-643.
    [127]MAY M,GANZENMüLLER G,WOLFRUM J,et al.Analysis of composite T-joint designs for enhanced resistance to hydrodynamic ram[J].IInternational Journal of Impact Engineering,2015,125:188-194.
    [128]ZHANG A,YANG S,YAO X.Numerical simulation of the penetration of fuel-filled tank by a high-speed projectile[J].Journal of Ship Mechanics,2010,14(9):998.
    [129]李亚智,陈钢.充液箱体受弹丸撞击下动态响应的数值模拟[J].机械强度,2007,29(1):143-147.
    [130]徐双喜,吴卫国,李晓彬,等.舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J].爆炸与冲击,2010,30(4):395-400.
    [131]徐双喜.大型水面舰船舷侧复合多层防护结构研究[D].武汉:武汉理工大学,2010.
    [132]TOWNSEND D,PARK N,DEVALL P.Failure of fluid filled structure due to high velocity fragment impact[J].International Journal of Impact Engineering,2003,29:723-733.
    [133]李营,张玮,杜志鹏,等.球形弹体打击作用下宽距水间隔铝板的动态响应特性[J].振动与冲击,2018,37(1):110-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700