RH精炼底吹工艺优化的物理模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physical simulation of RH refining bottom blowing process optimization
  • 作者:靳宇 ; 崔衡 ; 张建伟
  • 英文作者:JIN Yu;CUI Heng;ZHANG Jian-wei;Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing;
  • 关键词:RH精炼 ; 底吹 ; 流场 ; 物理模拟
  • 英文关键词:RH refining;;bottom blowing;;flow field;;physical simulation
  • 中文刊名:ZGYE
  • 英文刊名:China Metallurgy
  • 机构:北京科技大学钢铁共性技术协同创新中心;
  • 出版日期:2019-04-15
  • 出版单位:中国冶金
  • 年:2019
  • 期:v.29
  • 语种:中文;
  • 页:ZGYE201904004
  • 页数:5
  • CN:04
  • ISSN:11-3729/TF
  • 分类号:20-24
摘要
为了提高RH精炼效率,缩短精炼时间。以某钢厂150tRH真空精炼装置为原型,建立相似比为1∶4的水模型,研究底吹孔个数与底吹流量的影响。结果表明,实施底吹工艺后,RH循环流量和混匀时间相较无底吹时都有明显改善。相同底吹流量情况下,单孔底吹对循环流量提升效果明显优于双孔底吹工况,如当底吹流量为90L/min时,单孔底吹工况相较于无底吹工况循环流量增加34%,而双孔底吹工况只增加13%。底吹流量小于90L/min时,单孔底吹和双孔底吹工况下混匀时间相差不大。底吹流量大于90L/min时,双孔底吹工况下混匀时间反而有所增加。建议生产现场采用单孔底吹工艺,如采用双孔底吹工艺时,底吹流量应小于90L/min。
        To improve RH refining efficiency and shorten refining time,a 1∶4 water model was established based on a 150 tRH vacuum refining device in a steel plant to study the influence of the number of bottom blowing holes and the bottom flow.The results showed that the RH circulating flow rate and mixing time were obviously improved compared with those without bottom blowing.In the case of the same bottom blowing flow,the effect of the singlehole bottom blowing on circulation flow was obviously better than that of the double-hole bottom blowing.For example,when the bottom blowing flow rate was 90 L/min,the circulation flow rate of single-hole bottom blowing was 34% higher than that of no-bottom blowing,while that of double-hole bottom blowing was only 13%.When the bottom blowing rate was less than 90 L/min,there was little difference in mixing time between single-hole bottom blowing and double-hole bottom blowing.When the bottom blowing flow rate was greater than 90 L/min,the mixing time was increased in the double-hole bottom blowing condition.It was suggested that single-hole bottom blowing process should be adopted at the production field.If the double-hole bottom blowing process was used,the bottom blowing flow rate should not exceed 90 L/min.
引文
[1]何云龙,孙维,金友林,等.RH精炼工艺脱氮的影响因素[J].中国冶金,2015,25(2):47.
    [2]赵家七,蔡小锋,邹长东.180tRH真空精炼炉脱硫工艺开发及应用[J].钢铁,2018,53(11):41.
    [3]胡晓光.RH精炼过程增氮行为探讨[J].中国冶金,2018,28(4):45.
    [4]王月,艾新港,刘飞,等.钢包双孔对称交替底吹气混匀行为的物理模拟[J].中国冶金,2017,27(7):18.
    [5]艾新港,李胜利,包燕平,等.RH工艺及吹气孔堵塞对钢液混匀的影响[J].炼钢,2011,27(4):58.
    [6]刘洋,崔衡,李东侠.210tRH精炼过程的混匀特性[J].工程科学学报,2016,38(增刊1):14.
    [7]HE Sheng-ping,CHEN Gu-jun,GUO Chun-jiang.Investigation of mixing and slag layer behaviours in the RH degasser with bottom gas injection by using the VOF-DPM coupled model[J].Ironmaking and Steelmaking,2017,6(10):1743.
    [8]李应江.300tRH炉化学升温工艺对IF钢洁净度的影响[J].中国冶金,2018,28(12):24.
    [9]耿佃桥,雷洪,张兴武,等.RH-PTB循环流量和混合特性的水模型研究[J].东北大学学报,2010,31(8):1126.
    [10]LIN Lu,BAO Yan-ping,YUE Feng,et al.Physical model of fluid flow characteristics in RH-TOP vacuum refining process[J].International Journal of Minerals,Metallurgy and Materials,2012,19(6):483.
    [11]朴峰云,郑淑国,朱苗勇.145tRH真空精炼装置内钢液循环流动特性的水模型研究[J].特殊钢,2014,35(1):1.
    [12]郭汉杰,李宁,申甜甜.210tRH浸渍管内钢液流动机理的水模型实验研究[J].北京科技大学学报,2011,33(增刊1):6.
    [13]ZHANG Li-feng,LI Fei.Investigation on the fluid flow and mixing phenomenain a ruhrstahl-heraeus(RH)steel degasser using physical modeling[J].Metals and Materials Society,2014,66(7):1227.
    [14]LING Hai-tao,LI Fei,ZHANG Li-feng,et al.Investigation on the effect of nozzle number on the recirculation rate and mixing time in the RH process using VOF+DPM model[J].Metallurgical and Materials Transactions B,2016,47(6):1950.
    [15]迟云广,吕宏禹,王恒辉,等.RH精炼过程循环流量的物理模拟[J].钢铁研究,2012,40(2):21.
    [16]WEI Ji-he,HU Han-tao.Mathematical modelling of molten steel flow process in a whole RH degasser during the vacuum circulation refining process:Mathe-matical model of the flow[J].Process Metallurgy Steelmaking,2006,77(1):32.
    [17]Mehmet Metin Yavuz.The effects of electromagnetic brake on liquid steel flow in thin slab caster[J].Full Paper,2011,82(7):809.
    [18]黄博,孙彦辉,白雪峰,等.300t脱磷炉渣-钢界面搅拌与传质效果模拟[J].钢铁,2017,52(10):38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700