4种基因型猕猴桃对淹水胁迫的生理响应及耐涝性评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physiological responses and tolerance evaluation of four species of Actinidia to waterlogging stress
  • 作者:白丹凤 ; 李志 ; 齐秀娟 ; 陈锦永 ; 顾红 ; 黄武权 ; 任建杰 ; 钟云鹏 ; 方金
  • 英文作者:BAI Danfeng;LI Zhi;QI Xiujuan;CHEN Jinyong;GU Hong;HUANG Wuquan;REN Jianjie;ZHONG Yunpeng;FANG Jinbao;Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Fruit Tree Growth,Development and Quality Control of CAAS;Agricultural Technology Extension Center of Shangyu District,Shaoxing;
  • 关键词:猕猴桃 ; 基因型 ; 耐涝性 ; 生理机制
  • 英文关键词:Actinidia;;Genotype;;Waterlogging tolerance;;Physiological mechanism
  • 中文刊名:GSKK
  • 英文刊名:Journal of Fruit Science
  • 机构:中国农业科学院郑州果树研究所·中国农业科学院果树生长发育与品质控制重点开放实验室;浙江省绍兴市上虞区农业技术推广中心;
  • 出版日期:2018-12-27 17:34
  • 出版单位:果树学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金青年科学基金(31801846);; 中国农业科学院科技创新工程(CAAS-ASTIP-2017-ZFRI);; 河南省现代农业产业技术体系(S2014-11)
  • 语种:中文;
  • 页:GSKK201902005
  • 页数:11
  • CN:02
  • ISSN:41-1308/S
  • 分类号:37-47
摘要
【目的】研究淹水胁迫下4种基因型猕猴桃的形态变化及生理响应,以筛选耐涝种质资源,并初步分析猕猴桃耐涝的生理机制。【方法】采用"双套盆"法模拟淹水胁迫,对大籽猕猴桃'KR2’、对萼猕猴桃'KR5’、美味猕猴桃'15-13’及软枣猕猴桃'永丰一号’的两年生组培盆栽苗进行淹水处理,通过统计涝害指数观察淹水对此4种猕猴桃属植物形态的影响,同时通过测定根系活力、叶片光合能力及根系低氧伤害相关指标研究淹水对猕猴桃属4种植物生理代谢的影响,并通过隶属函数法综合评价4份材料的耐涝性。【结果】随着淹水胁迫时间的延长,4种猕猴桃属植物的涝害指数均呈现逐渐上升的趋势,根系活力逐渐下降,光合相关指标呈现先上升后下降的趋势,超氧阴离子产生速率、过氧化氢及丙二醛含量总体呈现逐渐上升的趋势。但在整个淹水胁迫期间',KR2'’KR5’仍能保持较高的根系活力与光合能力,且受到的低氧伤害较小。隶属函数法综合评价结果表明,4种猕猴桃属植物的耐涝性顺序为':KR2’>'KR5’>'15-13’>'永丰一号’。【结论】4种猕猴桃中',KR2’和'KR5’的耐涝性较强',15-13’和'永丰一号’属不耐涝猕猴桃。耐涝猕猴桃在涝害胁迫下可以缓解低氧伤害,维持自身的根系活力,保证地上部的健康生长,进而保证地上部叶片高水平的光合能力,从而表现出较强的耐涝性。
        【Objective】Water is very important for the growth and development of plants. Actinidia is ex-tremely sensitive to water stress because of its fleshy and shallow root system, and is one of the mostwaterlogging-intolerant fruit trees. Due to the large annual rainfall and viscous soil in the south area ofChina and the heavy rain in summer of Northern China, the orchard is prone to waterlogging because ofthe poor drainage. Waterlogging is an important factor restricting kiwifruit production. As kiwifruit ismostly propagated by grafting. The waterlogging-tolerance of rootstock directly affects the growth anddevelopment of scions of kiwifruit. However, breeding of waterlogging-tolerant kiwifruit rootstock doesnot receive enough attention at present. There is a shortage of waterlogging-tolerant rootstocks of kiwi-fruit in production. The objectives of this research were to screen waterlogging-tolerance germplasm re-sources and analyze the physiological responses to waterlogging stress in four species of Actinidia.Based on the study, waterlogging-tolerance genotypes would be recommended for kiwifruit production.【Methods】Two-year-old potted-plantlets of four kiwifruit species, Actinidia macrosperma'KR2', A.valvata'KR5', A. chinensis var. deliciosa'15-13'and A. arguta'Yongfeng 1', were used as experi-mental materials. We created waterlogging condition artificially by using the"double basin"method, inwhich the potted-plantlets were placed into a large plastic container, and the whole roots were sub-merged. The sampling was conducted 0, 3, 5, 7, 10 d and 14 d after implementation of waterloggingstress. Root activity was determined using fresh samples, and other samples were frozen in liquid nitro-gen and stored at-80 ℃. We studied the influences of waterlogging stress on the mophologic changecharacteristics including waterlogging index, root activity, net photosynthesis rate(Pn), transpiration(Tr), stomatal conductance(Gs), superoxide anion(O2-), hydrogen peroxide(H2 O2) and malondialdehyde(MDA) of the four kiwifruit genotypes. According to the changes of each index in response to waterlog-ging stress, we analyzed the waterlogging-tolerance of the four species of Actinidia. Comprehensiveevaluation on waterlogging tolerance of the four species of Actinidia was conducted by using the meth-od of membership function.【Results】With the prolongation of waterlogging, the waterlogging index ofthe four species of Actinidia increased and the root activity decreased gradually.'15-13'and'Yong-feng1'showed obvious symptoms after 10 days of waterlogging stress. The leaves were yellowing andwilting, and the roots were blacking and became rotted. By fourteen days of waterlogging stress, all theplantlets of'Yongfeng 1'had been dead, and by 21 days of waterlogging stress, all the plantlets of'15-13'had been dead. However, the plantlets of'KR2'and'KR5'basically kept healthy; only some ofthe leaves became yellowing at the margin, and only some of the root tips became black but not rotted.At the later stage of waterlogging treatment,'Yongfeng 1'and'15-13'had extremely low root activi-ty, but,'KR2'and'KR5'maintained higher root activity. The photosynthetic indexes(Pn, Trand Gs)increased firstly and then decreased under waterlogging stress generally. By the tenth days of waterlog-ging stress,'Yongfeng1'had lost photosynthetic capacity, and the values of three(Pn, Trand Gs) index-es were close to 0.'15-13'also lost photosynthetic capacity, while'KR2'and'KR5'still maintainedat a high level of photosynthesis after 14 days of stress. The contents of O2-, H2 O2 and MDA showed anincreasing trend during the stress in general. The contents of O2-, H2 O2 and MDA in'Yongfeng 1'and'15-13'increased significantly during waterlogging stress. However, they maintained relatively stablein'KR2'and'KR5', and there was no significant difference compared to control. Four genotypes ofkiwifruit had significant differences in hypoxia-tolerance. Through the comprehensive evaluation usingmembership function, the waterlogging tolerance of the four kiwifruit genotypes was in the order of'KR2'>'KR5'>'15-13'>'Yongfeng 1'.【Conclusion】'KR2'and'KR5'could keep higher rootactivity, strong photosynthetic capacity and small hypoxia injury under waterlogging stress. Therefore,'KR2'and'KR5'are waterlogging tolerant, and'Yongfeng 1'and'15-13'are sensitive to waterlog-ging stress. The waterlogging-tolerant genotypes of kiwifruit have the ability to alleviate active oxygendamage to maintain root activity during waterlogging stress.
引文
[1]张星.淹水胁迫对不同土壤类型理化特性及玉米养分吸收分配的影响[D].郑州:河南农业大学,2017.ZHANG Xing. Effects of waterlogging stress on physicochemi-cal properties and maize nutrient absorption and distribution indifferent soil types[D]. Zhengzhou:Henan Agricultural Universi-ty,2017.
    [2] JACKSON M B,ARMSTRONG W. Formation of aerenchymaand the processes of plant ventilation in relation to soil floodingand submergence[J]. Plant Biology,1999,1(3):274-287.
    [3]张建华.水稻生长过程对涝害的响复模型研究[D].福州:福建农林大学,2013.ZHANG Jianhua. A study on the response and recovery of mod-els of rice growth processes to waterlogging disaster[D]. Fu-zhou:Fujian Agriculture and Forestry University,2013.
    [4]向镜,陈惠哲,张玉屏,张义凯,朱德峰.淹涝条件下水温对水稻幼苗形态和生理的影响[J].中国水稻科学,2016,30(5):525-531.XIANG Jing,CHEN Huizhe,ZHANG Yuping,ZHANG Yikai,ZHU Defeng. Morphological and physiological response of riceseedlings to water temperature under complete submergence[J].China Journal Rice Science,2016,30(5):525-531.
    [5]尹冬梅.菊花近缘种属植物涝性评价及耐涝机理研究[D].南京:南京农业大学,2011.YIN Dongmei. Evaluation on waterlogging tolerance and itsmechanisms in chrysanthemum morifolium and its related spe-cies[D]. Nanjing:Nanjing Agricultural University,2011.
    [6]徐子棋,饶良懿,朱金兆,赵洋.水淹胁迫下饲料桑苗的生长及光合响应[J].农业工程学报,2015,31(22):105-114.XU Ziqi,RAO Liangyi,ZHU Jinzhao,ZHAO Yang. Growth andphotosynthesis characteristics of mulberry under flooding stress[J]. Transactions of the Chinese Society of Agricultural Engi-neering,2015,31(22):105-114.
    [7]齐琳,马娜,吴雯雯,安玉艳,徐君成,秦祥宏,汪良驹.无花果品种幼苗淹水胁迫的生理响应与耐涝性评估[J].园艺学报,2015,42(7):1273–1284.QI Lin,MA Na,WU Wenwen,AN Yuyan,XU Juncheng,QINXianghong,WANG Liangju. Physiological responses and toler-ance evaluation of fig cultivars to waterlogging[J]. Acta Horti-culturae Sinica,2015,42(7):1273–1284.
    [8]王阳,汪李平,杨静,王润东.甜瓜幼苗对淹水胁迫响应的形态差异及根系生理指标的比较[J].现代园艺,2017,1(2):7-8.WANG Yang,WANG Liping,YANG Jing,WANG Rundong.Morphological differences in response of muskmelon seedlingsto flooding stress and comparison of Root physiological Indexes[J]. Xiandai Horticulture,2017,1(2):7-8.
    [9]李艳,付艳东,马艳春,杜远鹏,翟衡.淹水对不同葡萄砧木生长及光合特性的影响[J].中国农业科学,2013,46(5):995-1004.LI Yan,FU Yandong,MA Yanchun,DU Yuanpeng,ZHAI Heng.Effects of waterlogging on characteristics of growth and photo-synthesis in different grape rootstocks[J]. Scientia AgriculturaSinica,2013,46(5):995-1004.
    [10] NISHUICHI S,YAMAUCHI T,TAKAHASHI H,KOTULA L,NAKAZONO M. Mechanisms for coping with submergenceand waterlogging in rice[J]. Rice,2012,5(1):1-14.
    [11] ABIKO T,KOTULA L,SHIONO K,MALIK A I,COLMER TD,NAKAZONO M. Enhanced formationof aerenchyma and in-duction of a barrier to radial oxygen loss in adventitious roots ofZea nicaraguensis contribute to its waterlogging tolerance ascompared with maize(Zea mays ssp. mays)[J]. Plant Cell&En-vironment,2012,35(9):1618-1630.
    [12] YAVAS I,UNAY A,AVDIN M. The waterlogging tolerance ofwheat varieties in western of Turkey[J]. The Scientific WorldJournal,2012(12):1-7.
    [13]黄宏文.猕猴桃研究进展Ⅱ[M].北京:科学出版社,2003.HUANG Hongwen. Research progress of kiwifruitⅡ[M]. Bei-jing:Science Press,2003.
    [14]王莉,王圣梅,黄宏文.猕猴桃属种间嫁接亲和性试验研究及抗根结线虫砧木的初步筛选[J].武汉植物学研究,2001,19(1):47-51.WANG Li,WANG Shengmei,HUANG Hongwen. Graft com-patibility among Actinidia species and screening rootstocks resis-tant to root-knot nematodes[J]. Journal of Wuhan Botanical Re-search,2001,19(1):47-51.
    [15] SHARMA S,SHARMA N. Effect of rootstocks on leaf water po-tential,water relations,antioxidant activities and drought toler-ant in flemish beauty pear under water stress conditions[J]. Indi-an Journal of Plant Physiology,2008,13(3):266-271.
    [16]李艳,杜远鹏,付艳东,翟衡.不同砧木嫁接的赤霞珠葡萄对淹水的生理响应[J].园艺学报,2013,40(11):2105-2114.LI Yan,DU Yuanpeng,FU Yandong,ZHAI Heng. Physiologicalresponses of waterlogging on different rootstock combinationsof Cabernet Sauvignon grape[J]. Acta Horticulturae Sinica,2013,40(11):2105-2114.
    [17]郭洪,赵密珍,周建涛.若干桃砧木的抗涝性[J].中国南方果树,1999,28(2):47.GUO Hong,ZHAO Mizhen,ZHOU Jiantao. Waterlogging toler-ance of peach rootstocks[J]. South China Fruits,1999,28(2):47.
    [18]高俊凤.植物生理学试验技术[M].西安:世界图书出版社,2000:159-198.GAO Junfeng. Plant physiology test technique[M]. Xi’an:World Book Publishing Press,2000:159-198.
    [19]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,31(6):55-57.WANG Aiguo,LUO Guanghua. Quantitative relation betweenthe reaction of hydroxylamine and superoxide anion radicals inplants[J]. Plant Physiology Communication,1990,31(6):55-57.
    [20]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:164-194.LI Hesheng. Principles and techniques of plant physiology andbiochemistry experiments[M]. Beijing:Higher Education Press,2000:164-194.
    [21]曾宪海,安锋,蔡明道,陈俊明,林位夫.高渗胁迫后橡胶树萌发籽苗抗旱性主成分及隶属函数析[J].中国农学通报,2010,26(1):260-264.ZENG Xianhai,AN Feng,CAI Mingdao,CHEN Junming,LINWeifu. Analysis of the principal component and the subordinatefunction on rubber seedling drought resistance under hypertonicsolution stresses[J]. Chinese Agricultural Science Bulletin,2010,26(1):260-264.
    [22]郑佳秋,郭军,梅燚,吴永成,祖艳侠,王薇薇.辣椒幼苗形态及生理特性对涝害胁迫的响应[J].西南农业学报,2016,29(3):536-540.ZHENG Jiaqiu,GUO Jun,MEI Yi,WU Yongcheng,ZU Yanxia,WANG Weiwei. Response of morphology and physiologicalcharacteristics of hot pepper seedling to waterlogging sterss[J].Southwest China Journal of Agricultural Sciences,2016,29(3):536-540.
    [23]郁万文,蔡金峰,高长忠.不同桃砧类型对淹水胁迫的生理响应及耐涝性评价[J].中国果树,2016(3):1-6.YU Wanwen,CAI Jinfeng,GAO Changzhong. Physiological re-sponse and waterlogging tolerance of different peach rootstocksto flooding stress[J]. China Fruits,2016(3):1-6.
    [24]张琛.三个类型猕猴桃品种实生苗对淹水胁迫的生理反应及其耐涝性比较[D].杭州:浙江师范大学,2013.ZHANG Chen. Tolerance compasision and physiology responseof three kiwifruit cultivars to waterlogging[D]. Hangzhou:Zheji-ang Normal University,2013.
    [25] AHMED S,NAWATA E,HOSOKAWA M,DOMAE Y,SAKU-RATANI T. Alterations in photosynthesis and some antioxidantenzymatic activities of mungbean subjected to waterlogging[J].Plant Science 2002,163(1):117-123.
    [26]刘凤礼.淹水对不同砧木猕猴桃生理生化特性的影响[D].杭州:浙江农林大学,2015.LIU Fengli. Effects of the physiological and biochemical charac-ters of kiwifruit growed on different stocks with waterloggingtreatment[D]. Hangzhou:Zhejiang A&F University,2015.
    [27]张琛,张慧琴,肖金平,马常念,谢鸣.三个品种猕猴桃实生苗的耐涝性比较[J].浙江农业学报,2013,25(5):1007-1012.ZHANG Chen,ZHANG Huiqin,XIAO Jinping,MA Changnian,XIE Ming. Comparison on seedling waterlogging tolerance ofthree cultivars of Actinidia chinensis Planch[J]. Acta Agricul-turae Zhejiangensis,2013,25(5):1007-1012.
    [28]马瑞娟,张斌斌,蔡志翔,沈志军,俞明亮.不同桃砧木品种对淹水的光合响应及其耐涝性评价[J].园艺学报,2013,40(3):409-416.MA Ruijuan,ZHANG Binbin,CAI Zhixiang,SHEN Zhijun,YUMingliang. Evaluation of peach rootstock waterlogging toler-ance based on the responses of the photosynthetic indexes tocontinuous submergence stress[J]. Acta Horticulturae Sinica,2013,40(3):409-416.
    [29]杜秀敏,殷文璇,赵彦修,张慧.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.DU Xiumin,YIN Wenxuan,ZHAO Yanxiu,ZHANG Hui. Pro-duction and scavenging mechanism of reactive oxygen speciesin plants[J]. Chinese Journal of Biotechnology,2001,17(2):121-125.
    [30]陈由强,朱锦懋,叶冰莹.水分胁迫对芒果(Mangifera indicaL.)幼叶细胞活性氧伤害的影响[J].生命科学研究,2000,4(1):60-64.CHEN Youqiang,ZHU Jinmao,YE Bingying. Effects of droughtstress on active oxygen damage and membrane lipid peroxida-tion of leaves in mango(Mangifera indica L.)[J]. Life ScienceResearch,2000,4(1):60-64.
    [31]米银法,马锋旺,马小卫.根际低氧对不同抗性猕猴桃幼苗抗氧化系统的影响[J].中国农业科学,2008,41(12):4328-4335.MI Yinfa,MA Fengwang,MA Xiaowei. Effect of root-zone hy-poxia stress on anti-oxidative system of Chinese gooseberryseedlings with different resistances[J]. Scientia Agricultura Sini-ca,2008,41(12):4328-4335.
    [32]陈杰,高青海,马横宇,曹笑.西瓜砧木苗期耐涝性鉴定及指标选择[J].北方园艺,2018(8):7-13.CHEN Jie,GAO Qinghai,MA Hengyu,CAO Xiao. Identifica-tion for flooding stress tolerance and selection for indexes of wa-termelon root stock at seedling stage[J]. Northern Horticulture,2018(8):7-13.
    [33]陈春芳.四种石楠属苗木对土壤水分胁迫的生理响应[D].南京:南京林业大学,2009.CHEN Chunfang. Physiological responses of four photinia seed-lings to water stress[D]. Nanjing:Nanjing Forestry University,2009.
    [34]熊英,欧阳杰,何永歆,黄乾龙,王静.芽期耐低温淹水的水稻种质的评价与筛选[J].杂交水稻,2015,30(4):54-58.XIONG Ying,OUYANG Jie,HE Yongxin,HUANG Qianlong,WANG Jing. Evaluation and screening of rice genetic resourceswith tolerance to low temperature and submergence in germinat-ing stage[J]. Hybrid Rice,2015,30(4):54-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700