聚酰亚胺介电常数的定量构效关系研究及其低介电薄膜的分子结构设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative Structure-Property Relationship Study on Dielectric Constant of Polyimide and Its Molecular Structure Design for Low Dielectric Films
  • 作者:范振国 ; 陈文欣 ; 魏世洋 ; 刘腾 ; 刘四委 ; 池振国 ; 张艺 ; 许家瑞
  • 英文作者:Zhen-guo Fan;Wen-xin Chen;Shi-yang Wei;Teng Liu;Si-wei Liu;Zhen-guo Chi;Yi Zhang;Jia-rui Xu;Laboratory of Polymeric Composite and Functional Materials, Guangdong Laboratory of High-Performance PolymerComposites, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer PhotoelectricFunctional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and ChemicalEngineering, Sun Yat-sen University;
  • 关键词:聚酰亚胺 ; 介电常数 ; 定量构效关系 ; 多元线性回归 ; 人工神经网络
  • 英文关键词:Polyimide;;Low dielectric constant;;Quantitative structure-property relationship;;Multiple linearregression;;Artificial neural network
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:中山大学聚合物复合材料及功能材料教育部重点实验室高性能树脂基复合材料广东省重点实验室广东省高性能有机聚合物光电功能薄膜工程技术研究中心光电材料与技术国家重点实验室;
  • 出版日期:2018-10-18 13:30
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:国家重点基础研究计划(973计划,项目号2014CB643605);; 国家自然科学基金(基金号 51873239, 51373204);; 广东省“特支计划”科技创新领军人才项目(项目号 2016TX03C295);; 广东省前沿与关键技术创新专项(项目号 2015B090915003, 2015B090913003);; 中国博士后科学基金(基金号 2017M612801);; 高等学校基本科研业务费(项目号 161gzd08)资助项目
  • 语种:中文;
  • 页:GFXB201902010
  • 页数:10
  • CN:02
  • ISSN:11-1857/O6
  • 分类号:89-98
摘要
利用量子化学计算方法和基团贡献法,采集了61种聚酰亚胺分子结构模型单元的12种量子化学结构参数,并通过通径分析法筛选出5种影响该聚合物介电常数的主要因素;在此基础上,基于多元线性回归(MLR)和人工神经网络(ANN)方法构建了2种定量构效关系研究模型(QSPR),分析了模型的稳定性及预测能力.计算结果揭示了5种结构参数与材料介电常数之间的内在关系——含氟量的自然律e~(-F%)、偶极距μ、溶度参数δ与介电常数之间存在正相关关系,而最负原子净电荷q~-、侧基长度L则与介电常数则存在着负相关关系. MLR-QSPR模型具备较好的物理意义,ANN-QSPR则具有较好的精度,实验数据证明2种模型的平均误差均低于10%.依据MLR-QSPR模型设计了5种不同含氟量的聚酰亚胺链节结构,结果显示含氟量的增加有利于降低材料的介电常数值,但当含氟量达到一定程度后,介电常数趋于稳定,与文献报道实验结果相一致;当含氟量为34%时(k-3),材料的介电常数最低,为2.02.
        Using the quantum chemical calculation method and the group contribution method,12 kinds of quantum chemical structure parameters of 61 polyimide molecular structure model units were collected.In order to simplify the calculation process,a segment of the polymer chain was selected and saturated with methyl group,which was used as the model of the polyimide.Through the path analysis,5 main factors that affect the dielectric constant of the polyimide films were further screened.On this basis,the multiple linear regression(MLR)and artificial neural network(ANN)methods were constructed.Two quantitative structure-property relationship model(QSPR)were built,and the stability and prediction ability of the models were analyzed.The results revealed the intrinsic relationship between the 5 structural parameters and the dielectric constant,i.e.,the fluorine contentthe dipole pitchμ,and the solubility parameterδof polyimide are positively correlated with the dielectric constant,while the most negative atomic net chargeand the side length L are negatively correlated with the dielectric constant.MLR-QSPR model has better physical significance and the ANN-QSPR has better accuracy.The accuracy of the models is validated by combining four structures:6FDA-TriPMPDA,6FDA-TriPMMDA,6FDA-TPCF3PDA and 6FDA-TPCF3MDA in our lab.The experimental data show that the average error of the two models is lower than 10%under 1 kHz test condition.Five different fluorine-containing polyimide chain structures were designed according to MLR-QSPR model.The results show that the increase in fluorine content is beneficial to reduce the dielectric constant of the material,but when the fluorine content reaches a certain level,the dielectric constant tends to be stable,which are consistent with the experimental results reported in the literature.When the fluorine content is 34%(k-3),the material possesses the lowest dielectric constant of 2.02.Based on the results of this study,it is believed that QSPR has a good application prospect and theoretical significance in designing new polyimide materials and predicting its properties.
引文
1Liu Y,Zhou Z,Qu L,Zou B,Chen Z,Zhang Y,Liu S,Chi Z,Chen X,Xu J.Mater Chem Front,2017,1(2):326-337
    2 Bei R,Qian C,Zhang Y,Chi Z,Liu S,Chen X,Xu J,Aldred M P.J Mater Chem C,2017,5(48):12807-12815
    3 Zhou Z,Zhang Y,Liu S,Chi Z,Chen X,Xu J.J Mater Chem C,2016,4(44):10509-10517
    4 Liu Y,Qian C,Qu L,Wu Y,Zhang Y,Wu X,Zou B,Chen W,Chen Z,Chi Z,Liu S,Chen X,Xu J.Chem Mater,2015,27:6543-6549
    5 Yan W,Zhang Y,Sun H,Liu S,Chi Z,Chen X,Xu J.J Mater Chem A,2014,2(48):20958-20965
    6 Zhang Y,Xiao S,Wang Q,Liu S,Qiao Z,Chi Z,Xu J,Economy J.J Mater Chem,2011,21(38):14563-14568
    7 Yang Tinging(杨婷婷),Zhou Zhuxin(周竹欣),Zhang Yi(张艺),Liu Siwei(刘四委),Chi Zhenguo(池振国),Xu Jiarui(许家瑞).Acta Polymerica Sinica(高分子学报),2017,(3):411-428
    8 Li Yuhan(李玉邯),Jin Rizhe(金日哲),Gao Lianxun(高连勋).Acta Polymerica Sinica(高分子学报),2014,(8):1096-1102
    9 Liu Jingang(刘金刚),Li Zhuo(李卓),Gao Zhiqi(高志琪),Yang Haixia(杨海霞),Yang Shiyong(杨士勇).Acta Polymerica Sinica(高分子学报),2009,(1):11-16
    10 Liu Jingang(刘金刚),Li Zhuo(李卓),Yang Haixia(杨海霞),Yang Shiyong(杨士勇).Acta Polymerica Sinica(高分子学报),2008,(5):460-465
    11Chen Yiwang(陈义旺),Nie Huarong(聂华荣),Chen Lie(谌烈),Kang Yangtang(康燕镗).Acta Polymerica Sinica(高分子学报),2005,(6):807-812
    12Liu Jingang(刘金刚),Shang Yuming(尚玉明),Fan Lin(范琳),Yang Shiyong(杨士勇).Acta Polymerica Sinica(高分子学报),2003,(4):565-570
    13Roy K,Mitra I,Kar S,Ojha P K,Das R N,Kabir H.J Chem Inf Model,2012,52(2):396-408
    14Katritzky A R,Pacureanu L,Dobchev D,Karelson M.J Chem Inf Model,2007,47(3):782-793
    15Fishtik I,Datta R.J Chem Inf Comput Sci,2003,43(4):1259-1268
    16Katritzky A R,Stoyanova-Slavova I B,T?mm K,Tamm T,Karelson M.J Phys Chem A,2011,115(15):3475-3479
    17Katritzky A R,Petrukhin R,Jain R,Karelson M.J Chem Inf Comput Sci,2001,41(6):1521-1530
    18Cocchi M,Benedetti P G D,Seeber R,Tassi L,Ulrici A.J Chem Inf Comput Sci,1999,39(6):1190-1203
    19Lee A,Kim D,Kim K,Choi S,Choi K,Jung D H.J Mol Model,2012,18(1):251-256
    20Schweitzer R C,Morris J B.Anal Chim Acta,1999,384(3):285-303
    21Schweitzer R C,Morris J B.J Chem Inf Comput Sci,2000,40(5):1253-1261
    22Sild S,Karelson M.J Chem Inf Comput Sci,2002,42(2):360-367
    23Findlay J A,Barnsley J E,Gordon K C,Crowley J D.Molecules,2018,23(8):2037
    24Shariatinia Z.Phys Chem Res,2017,6(1):15-29
    25Small P A.J Appl Chem,1953,3(2):71-80
    26Banchero M,Manna L.Molecules,2018,23(6):1379
    27Le T,Epa V C,Burden F R,Winkler D A.Chem Rev,2012,112(5):2889-2919
    28Ding Mengxian(丁孟贤).Polyimides:Chemistry,Relationship between Structure and Properties Materials(聚酰亚胺-化学、结构与性能的关系及材料).Beijing(北京):Science Press(科学出版社),2006.246-247
    29Maier G.Prog Polym Sci,2001,26(1):3-65
    30Liu Y,Zhang Y,Lan Q,Liu S,Qin Z,Chen L,Zhao C,Chi Z,Xu J,Economy J.Chem Mater,2012,24(6):1212-1222
    31Liu Y,Zhang Y,Lan Q,Qin Z,Liu S,Zhao C,Chi Z,Xu J.J Polym Sci,Part A:Polym Chem,2013,51(6):1302-1314
    32Chern Y,Tsai J.Macromolecules,2008,41(24):9556-9564
    33Qian Z,Ge Z,Li Z,He M,Liu J,Pang Z,Fan L,Yang S.Polymer,2002,43:6057-6063
    34Jang W,Lee H,Lee S,Choi S,Shin D,Han H.Mater Chem Phys,2007,104(2-3):342-349
    35Yang C,Su Y,Wu K.J Polym Sci,Part A:Polym Chem,2004,42:5424-5438
    36Yang C,Chen R,Chen K.J Polym Sci,Part A:Polym Chem,2003,41:922-938
    37Yang C,Su Y,Chiang H.React Funct Polym,2006,66(7):689-701
    38Chen W,Zhou Z,Yang T,Bei R,Zhang Y,Liu S,Chi Z,Chen X,Xu J.React Funct Polym,2016,108:71-77
    39Sun Huawei(孙华伟).Synthesis and Optical Properties Studies on Novel Diamines and Their Polyimide Films(新型二胺单体及其聚酰亚胺的设计合成与光学特性研究).Doctoral Dissertation of Sun Yat-sen University(中山大学博士学位论文),2014

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700