吉兰泰盐湖盆地地下水Cr~(6+)、As、Hg健康风险评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Health risk assessment of Cr~(6+), As and Hg in groundwater of Jilantai salt lake basin, China
  • 作者:高瑞忠 ; 秦子元 ; 张生 ; 贾德彬 ; 杜丹丹 ; 张阿龙 ; 王喜喜
  • 英文作者:GAO Rui-zhong;QIN Zi-yuan;ZHANG sheng;JIA De-bin;DU Dan-dan;ZHANG A-long;WANG Xi-xi;Institute of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University;Inner Mongolia Key Laboratory of Water Resources Protection and Utilization;Old Dominion University;
  • 关键词:地下水 ; 重金属 ; 空间分布 ; 同源性 ; 健康风险评价 ; 盐湖盆地
  • 英文关键词:groundwater;;heavy metals;;spatial distribution;;homologous source;;health risk assessment;;salt lake basin
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:内蒙古农业大学水利与土木建筑工程学院;内蒙古水资源保护与利用重点实验室;美国欧道明大学;
  • 出版日期:2018-03-26 08:41
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金资助项目(51469019);; 美国国家自然科学基金项目(100653-010)
  • 语种:中文;
  • 页:ZGHJ201806046
  • 页数:10
  • CN:06
  • ISSN:11-2201/X
  • 分类号:355-364
摘要
选取西北干旱区吉兰泰盐湖盆地为研究对象,系统采集71个地下水样品,测定重金属Cr~(6+)、As、Hg,以及主要化学成分的含量,以地质统计学插值绘图揭示盐湖盆地地下水中Cr~(6+)、As、Hg的空间分布特征,以单因子指数法、内梅罗指数法和US EPA健康风险评价模型解析地下水中Cr~(6+)、As、Hg的污染及健康风险状况,以统计相关检验进行Cr~(6+)、As和Hg的源分析.结果表明:盐湖盆地地下水中普遍含有Cr~(6+)、As、Hg,Cr~(6+)在盐湖上游及东北部含量较高,As在西南台地含量较高,Hg在西北部巴音乌拉山出现高值区域,其分布与变化受到天然因素和人类活动的双重影响;Cr~(6+)、As出现局部区域超标,超标率分别为8.45%和2.82%;Cr~(6+)主要超标区域在盐湖西南侧呈条块状分布,并在盐湖附近Cr~(6+)含量较高;As以点状超标,分布于西南部和东北部;盐湖盆地地下水87.3%处于安全清洁状态,仅5.6%轻度污染出现在西南部,不存在中度和重度污染;通过饮用水途径的化学致癌物的健康风险值远高于非化学致癌物的健康风险值,西南部图格力高勒沟谷区域化学致癌物Cr~(6+)超过了US EPA最大可接受风险,但整个盐湖盆地Cr~(6+)的平均健康风险值低于US EPA最大可接受风险;As和Hg均低于US EPA最大可接受风险;盐湖盆地总致癌风险特征与Cr~(6+)基本一致,Cr~(6+)平均健康风险占总致癌风险贡献率的89%;Cr~(6+)超标原因包括盐湖盆地高锰酸盐指数偏高,促使Cr3+氧化成为Cr~(6+),As与Cr存在一定的同源关系.
        Jilantai salt lake basin in the arid area of northwest China was selected as the typical study area. 71 groundwater samples were collected, and of which Cr~(6+), As, Hg and main chemical constituents were tested. The figures based on the geological statistics interpolation were plotted to reveal the spatial distribution characteristics of Cr~(6+), As and Hg in the groundwater. The conditions of pollution and health risk from Cr~(6+), As, Hg were assessed by the standard index method, the Nemerow index method and US EPA model. Source analysis of Cr~(6+), Hg, As was carried out by statistical test. The results showed that: Cr~(6+), As, Hg generally existed in the basin groundwater. The content of Cr~(6+) in upper reaches and north-eastern part of the salt lake were higher, and the content of As in the south-western platform was higher. Hg concentration appeared higher value in the northwest Mountain Bayinwula. All of these distributions and changes were affected by nature and human activities. The content of Cr~(6+) and As appeared excessive in the local area, and the excessive ratios were 8.45% and 2.82% separately. The main excessive areas of Cr~(6+) were strip-like along with Tugeligaole Valley in the south-western part. As was excessive as spotted state and distributed in the southwest and northeast part. There were no moderate and severe pollution in the study area, and the 87.3% groundwater was safe and clean. There was local mild pollution area in southwest part of the salt lake. The health risk of chemical carcinogens by the way of drinking water was much higher than that of non-chemical carcinogens. Although chemical carcinogens Cr~(6+) in the southwest part exceeded the maximum acceptable risk of US EPA, the average health risk of whole basin from Cr~(6+) was lower than that limit; the chemical carcinogen As and non-chemical carcinogen Hg were both lower than the acceptable value. The distribution of total carcinogenic risk was consistent with Cr~(6+)s', and the contribution rate of Cr~(6+) was 89% for the total carcinogenic risk. The high content of Cr~(6+) might be due to the higher permanganate index, which made Cr3+ oxidation to Cr~(6+). As and Cr were homologous source.
引文
[1]雷鸣,曾敏,廖柏寒,等.某矿区土壤和地下水重金属污染调查与评价[J].环境工程学报,2012,6(12):4687-4693.
    [2]Wang X,Sato T,Xing B,et al.Health risks of heavy metals to the general public in Tianjin,China via consumption of vegetables and fish[J].Science of the Total Environment,2005,350(28):1-3.
    [3]王铁军,查学芳,熊威娜,等.贵州遵义高坪水源地岩溶地下水重金属污染健康风险初步评价[J].环境科学研究,2008,21(1):46-50.
    [4]黄冠星,孙继朝,张英,等.珠江三角洲污灌区地下水重金属含量及其相互关系[J].吉林大学学报(地),2011,41(1):228-234.
    [5]乔冈,徐友宁,陈华清,等.某金矿区浅层地下水重金属及氰化物污染评价[J].地质通报,2015,34(11):2031-2036.
    [6]张妍,李发东,欧阳竹,等.黄河下游引黄灌区地下水重金属分布及健康风险评估[J].环境科学,2013,34(1):121-128.
    [7]林曼丽,桂和荣,彭位华,等.典型矿区深层地下水重金属含量特征及健康风险评价-以皖北矿区为例[J].地球学报,2014,(5):589-598.
    [8]杨彦,于云江,魏伟伟,等.常州市浅层地下水重金属污染对城区、城郊居民健康风险评价[J].环境化学,2013,(2):202-211.
    [9]Muhammad S,Shah M T,Khan S.Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region,northern Pakistan[J].Microchemical Journal,2011,98(2):334-343.
    [10]Bhowmick S,Pramanik S,Mondal P,et al.Arsenic in groundwater of West Bengal,India:A review of human health risks and assessment of possible intervention options[J].Science of the Total Environment,2018,612:148-169.
    [11]Rajasekhar B,Nambi I M,Govindarajan S K.Human health risk assessment of ground water contaminated with petroleum PAHs using Monte Carlo simulations:A case study of an Indian metropolitan city[J].Journal of environmental management,2018,205:183-191(DOI:10.1016/j.jenvman.2017.09.078).
    [12]Mishra H,Karmakar S,Kumar R,et al.A long-term comparative assessment of human health risk to leachate-contaminated groundwater from heavy metal with different liner systems[J].Environmental science and pollution research international,2017(DOI:10.1007/s11356-017-0717-4).
    [13]宋国慧.沙漠湖盆区地下水生态系统及植被生态演替机制研究[D].西安:长安大学,2012.
    [14]HJ/T164-2004地下水环境监测技术规范[S].
    [15]张舒婷,李晓燕,陈思民.贵阳市不同空间高度灰尘和重金属沉降通量[J].中国环境科学,2015,35(6):1630-1637.
    [16]韩智勇,许模,刘国,等.生活垃圾填埋场地下水污染物识别与质量评价[J].中国环境科学,2015,35(9):2843-2852.
    [17]谷朝君,潘颖,潘明杰.内梅罗指数法在地下水水质评价中的应用及存在问题[J].环境保护科学,2002,28(1):45-47.
    [18]李亚松,张兆吉,费宇红,等.内梅罗指数评价法的修正及其应用[J].水资源保护,2009,25(6):48-50.
    [19]US EPA.1986.Guidelines for carcinogen risk assessment[R].EPA/630/R-00-004.Washington DC:Risk Assessment Forum U.S.Environmental Protection Agency.33992-34003.
    [20]US EPA.2005.Guidelines for carcinogen risk assessment[R].Usepa/630/p-03/001F.Washington DC:Risk Assessment Forum U.S.Environmental Protection Agency.1-166.
    [21]车飞,于云江,胡成,等.沈抚灌区土壤重金属污染健康风险初步评价[J].农业环境科学学报,2009,28(07):1439-1443.
    [22]刘成,邵世光,范成新,等.巢湖重污染汇流湾区沉积物重金属污染特征及风险评价[J].中国环境科学,2014,34(4):1031-1037.
    [23]付义临,李涛,徐友宁,等.土壤重金属累积作用指示因子的筛选方法-灰色关联度分析法与数理统计法[J].地质通报,2015,34(11):2061-2065.
    [24]宁晓波,项文化,方晰,等.贵阳花溪区石灰土林地土壤重金属含量特征及其污染评价[J].生态学报,2009,29(4):2169-2177.
    [25]Lv J,Liu Y,Zhang Z,et al.Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils[J].Journal of Hazardous Materials,2013,261(13):387-397.
    [26]孙超,陈振楼,张翠,等.上海市主要饮用水源地地水重金属健康风险评价[J].环境科学研究,2009,22(1):60-65.
    [27]张芳,常春平,李静,等.平邑县农村地区地下水中重金属特征研究[J].农业环境科学学报,2013,32(1):127-134.
    [28]余彬.泾惠渠灌区浅层地下水中重金属的健康风险评价[D].西安:长安大学,2010.
    [29]张莉,祁士华,瞿程凯,等.福建九龙江流域重金属分布来源及健康风险评价[J].中国环境科学,2014,34(8):2133-2139.
    [30]黄磊,李鹏程,刘白薇.长江三角洲地区地下水污染健康风险评价[J].安全与环境工程,2008,15(2):26-29.
    [31]王若师,许秋瑾,张娴,等.东江流域典型乡镇饮用水源地重金属污染健康风险评价[J].环境科学,2012,33(9):3083-3088.
    [32]陈云增,李天奇,马建华,等.淮河流域典型癌病高发区土壤和地下水重金属积累及健康风险[J].环境科学学报,2016,36(12):4537-4545.
    [33]温海威,吕聪,王天野,等.沈阳地区农村地下饮用水中重金属健康风险评价[J].中国农学通报,2012,28(23):242-247.
    [34]于云江,杨彦.基于GIS的松花江沿岸某区浅层地下水污染特征及人群暴露风险评价[J].中国环境科学,2013,33(8):1487-1494.
    [35]陆凤娟.以嘉定区为例对上海市郊区饮用水源水重金属进行健康风险评价[J].中国环境监测,2013,(2):5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700