冷却速率对Mg-Zn-Ca合金显微组织、力学性能及腐蚀性能的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of cooling rate on microstructure,mechanical and corrosion properties of Mg-Zn-Ca alloy
  • 作者:王敬丰 ; 黄崧 ; 郭胜锋 ; 魏怡芸 ; 潘复生
  • 英文作者:Jing-feng WANG 1,2 ,Song HUANG 1,2 ,Sheng-feng GUO 3 ,Yi-yun WEI 1,2 ,Fu-sheng PAN 1 1.National Engineering Research Center for Magnesium Alloys,Chongqing University,Chongqing 400044,China; 2.College of Materials Science and Engineering,Chongqing University,Chongqing 400044,China; 3.School of Materials Science and Engineering,Southwest University,Chongqing 400715,China
  • 关键词:Mg-Zn-Ca合金 ; 块体非晶 ; 冷却速率 ; 力学性能 ; 显微组织 ; 腐蚀性能
  • 英文关键词:Mg-Zn-Ca alloy;bulk metallic glasses;cooling rate;mechanical properties;microstructure;corrosion resistance
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:重庆大学国家镁合金工程中心;重庆大学材料科学与工程学院;西南大学材料科学与工程学院;
  • 出版日期:2013-07-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2013
  • 期:v.23
  • 基金:Project(NCET-11-0554)supported by the Program for New Century Excellent Talents in University;; Project(2011BAE22B04)supportedby the National Key Technology R&D Program of China;; Project(51271206)supported by the National Natural Science Foundation of China
  • 语种:英文;
  • 页:ZYSY201307012
  • 页数:6
  • CN:07
  • ISSN:43-1239/TG
  • 分类号:71-76
摘要
采用铜模喷铸法制备直径为1.5、2和3mm的Mg69Zn27Ca4合金。采用X射线衍射(XRD)、力学性能实验及电化学实验研究冷却速率对合金的显微组织、力学性能及腐蚀性能的影响。结果表明:当直径为1.5mm时,合金为完全非晶态;随着冷却速率的下降,合金中出现韧性的α-Mg和Mg-Zn相,使得3mm直径样品的压缩应变量达到3.1%,优于1.5mm非晶合金的1.3%。此外,制备的Mg-Zn-Ca合金在模拟海水中的抗腐蚀性能远好于传统的ZK60镁合金。
        Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed of amorphous phase. However, with the cooling rate decline, a little α-Mg and MgZn dendrites can be found in the amorphous matrix. Based on the microstructural and tensile results, the ductile dendrites are conceived to be highly responsible for the enhanced compressive strain from 1.3% to 3.1% by increasing the sample diameter from 1.5 mm to 3 mm. In addition, the Mg69Zn27Ca4 alloy with 1.5 mm diameter has the best corrosion properties. The current Mg-based alloys show much better corrosion resistance than the traditionally commercial wrought magnesium alloy ZK60 in simulated sea-water.
引文
[1]HUANG J C,CHU J P,JANG J S C.Recent progress in metallic glasses in Taiwan[J].Intermetallics,2009,17(12):973-987.
    [2]INOUE A,KATO A,ZHANG T.Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method[J].Mater Trans JIM,1991,32:609-616.
    [3]CHEN H M,ZHONG H M,XIA P,OU Y,Y I F.Composition range of amorphous Mg-Ni-Y alloys[J].Journal of Rare Earths,2003;21(5):567-570.
    [4]WANG Y C,WANG Y R,WEI B C.Kinetics of glass transition and crystallization in carbon nanotube reinforced Mg-Cu-Gd bulk metallic glass[J].Journal of Rare Earths,2006,24:327-331.
    [5]HUI X,DONG W,CHEN G L,YAO K F.Formation,microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites[J].Acta Materialia,2007,55:907-920.
    [6]ZHAO Y Y,MA E,XU J.Reliability of compressive fracture strength of Mg–Zn–Ca bulk metallic glasses:Flaw sensitivity and Weibull statistics[J].Scripta Materialia,2008,58:496-499.
    [7]WU X F,SI Y,SUO Z Y,KANG Y.Synthesis and mechanical behavior of ternary Mg-Cu-Dy in situ bulk metallic glass matrix composite[J].J Mater Sci,2009,44:6035-6039.
    [8]GAO J H,GUAN S K,REN Z W,SUN Y F,ZHU S J,WANG B.Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid[J].Materials Letters,2011,65:691-693.
    [9]GU X N,ZHENG Y F,ZHONG S P,XI T F,WANG J Q,WANG W H.Corrosion of,and cellular responses to Mg-Zn-Ca bulk metallic glasses[J].Biomaterials,2010,31:1093-1103.
    [10]LI Q F,WENG H R,SUO Z Y,REN Y L,YUAN X G,QIU K Q.Microstructure and mechanical properties of bulk Mg-Zn-Ca amorphous alloys and amorphous matrix composites[J].Materials Science and Engineering A,2008,487:301-308.
    [11]ZHAO X J,QU R T,WANG F F,ZHANG Z F,SHEN B L,STOICA M,ECKERT J.Fracture mechanism of some brittle metallic glasses[J].Journal of Applied Physics,2009,105:103519.
    [12]XU Y K,MA H,XU J,MA E.Mg-based bulk metallic glass composites with plasticity and gigapascal strength[J].Acta Materialia,2005,53:1857-1866.
    [13]PAN D G,LIU W Y,ZHANG H F,WANG A M,HU Z Q.Mg–Cu–Ag–Gd–Ni bulk metallic glass with high mechanical strength[J].Journal of Alloys and Compounds,2007,438:142-144.
    [14]LIU C T,HEATHERLY L,EASTON D S.Test environments and mechanical properties of Zr-base bulk amorphous alloys[J].Metall Mater Trans A,1998,29(7):1811-1820.
    [15]ARGON A S.Plastic deformation in metallic glasses[J].Acta Materialia,1979,27:47-58.
    [16]LIU N,WANG J L,WANG L D,WU Y M,WANG L M.Electrochemical corrosion behavior of Mg-5Al-0.4Mn-xNd in NaCl solution[J].Corrosion Science,2009,51:1328-1333.
    [17]SONG G L,ATRENS A.Corrosion mechanisms of magnesium alloys[J].Advanced Engineering Materials,1999,1:11-33.
    [18]JASON S C J,JIAN S R,LI T H,HUANG J C,LIU C T.Structural and mechanical characterizations of ductile Fe particles-reinforced Mg-based bulk metallic glass composites[J].Journal of Alloys and Compounds,2009,485:290-294.
    [19]ZHANG Z F,HE G,ECKERT J,SCHULTZ L.Fracture mechanisms in bulk metallic glassy materials[J].Phys Rev Lett,2003,91(4):045504.
    [20]HAYS C C,KIM C P,JOHNSON W L.Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersion[J].Phys Rev Lett,2000,84(14):2901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700