无铅非线性介电储能陶瓷材料研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress on lead-free nonlinear dielectric ceramic materials for energy storage
  • 作者:汪春昌 ; 李天宇
  • 英文作者:WANG Chunchang;LI Tianyu;School of Physics & Materials Science,Anhui University;
  • 关键词:非线性介电储能陶瓷 ; 无铅 ; 钛酸铋钠 ; 钛酸钡 ; 铌酸银
  • 英文关键词:nonlinear dielectric energy storage ceramics;;lead-free;;sodium bismuth titanate;;barium titanate;;silver niobate
  • 中文刊名:AHDX
  • 英文刊名:Journal of Anhui University(Natural Science Edition)
  • 机构:安徽大学物理与材料科学学院;
  • 出版日期:2019-07-15
  • 出版单位:安徽大学学报(自然科学版)
  • 年:2019
  • 期:v.43
  • 基金:国家自然科学基金资助项目(51502001,51872001);; 清华大学低维量子物理国家重点实验室开放研究基金资助项目(KF201803)
  • 语种:中文;
  • 页:AHDX201904001
  • 页数:11
  • CN:04
  • ISSN:34-1063/N
  • 分类号:6-16
摘要
介电储能陶瓷材料具有能量密度高及充放电快等优点,被认为是脉冲功率储能电容器的优秀候选材料.目前应用的介电储能陶瓷材料的储能密度较低且大多数含有铅元素,使其实际应用受到阻碍,因此,高储能密度的无铅介电储能陶瓷材料成为研究热点.该文概述提高无铅非线性介电陶瓷材料储能密度的有效方法,分别介绍钛酸铋钠(Na_(0.5)Bi_(0.5)TiO_3)基、钛酸钡(BaTiO_3)基及铌酸银(AgNbO_3)基陶瓷的最新研究进展,并对无铅非线性介电储能陶瓷材料后续研究进行展望.
        Dielectric energy storage ceramic materials are considered as a potential candidate for ideal pulsed-power devices because of their high power density and fast of chargedischarge characteristics.However,the low energy storage density of dielectric energy storage ceramic materials and the fact that most of them contain lead hinder their practical application.Lead-free dielectric energy storage ceramic materials with high energy storage density have become a research hotspot.Research activities have now been focused on leadfree dielectric energy storage ceramic materials with high energy storage density.In this paper,the effective methods to improve the energy storage density of lead-free nonlinear dielectric ceramics were reviewed.The recent research progress of sodium bismuth titanate(Na_(0.5)Bi_(0.5)TiO_3),barium titanate(BaTiO_3)and silver niobate(AgNbO_3)based ceramics were introduced respectively.The future research of lead-free nonlinear dielectric ceramics was also discussed.
引文
[1] PANWAR N L,KAUSHIK S C,KOTHARI S.Role of renewable energy sources in environmental protection:a review[J].Renewable&Sustainable Energy Reviews,2011,15(3):1513-1524.
    [2] KAYGUSUZ K.Hydropower and the world’s energy future[J].Energy Sourses,2004,26(3):215-224.
    [3] GU NEY M S,TEPE Y.Classification and assessment of energy storage systems[J].Renewable&Sustainable Energy Reviews,2017,75:1187-1197.
    [4] ZHENG C W,PAN J.Assessment of the global ocean wind energy resource[J].Renewable&Sustainable Energy Reviews,2014,33:382-391.
    [5] GOODMAN J.Researching climate crisis and energy transitions:some issues for ethnography[J].Energy research&Social Science,2018,45:340-347.
    [6] YAO L Z,YANG B,CUI H F,et al.Challenges and progresses of energy storage technology and its application in power systems[J].Journal of Modern Power Systems and Clean Energy,2016,4(4):519-528.
    [7] PARRA D,SWIERCZYNSKI M,STROE D I,et al.An interdisciplinary review of energy storage for communities:challenges and perspectives[J].Renewable&Sustainable Energy Reviews,2017,79:730-749.
    [8] DING F,YAKOBSON B I.Challenges in hydrogen adsorptions:from physisorption to chemisorption[J].Frontiers of Physics,2011,6(2):142-150.
    [9] YANG L T,KONG X,LI F,et al.Perovskite lead-free dielectrics for energy storage applications[J].Progress in Materials Science,2019,102:72-108.
    [10] CHU B J,ZHOU X,REN K L,et al.A dielectric polymer with high electric energy density and fast discharge speed[J].Science,2006,313(5785):334-336.
    [11] WHITTINGHAM M S.Materials challenges facing electrical energy storage[J].MRS Bulletin,2008,33(4):411-419.
    [12] LIU Z,LU T,YE J M,et al.Antiferroelectrics for energy storage applications:a review[J].Advanced Materials Technologies,2018,3(9):1800111.
    [13] HAO X H.A review on the dielectric materials for high energy-storage application[J].Journal of Advanced Dielectrics,2013,3(1):1330001.
    [14]杜洪亮,杨泽田,高峰,等.无铅非线性介电储能陶瓷:现状与挑战[J].无机材料学报,2018,33(10):1046-1058.
    [15] HAO X H,ZHAI J W,KONG L B,et al.A comprehensive review on the progress of lead zirconate-based antiferroelectric materials[J].Progress in Materials Science,2014,63:1-57.
    [16] LI F,ZHAI J W,SHEN B,et al.Recent progress of ecofriendly perovskite-type dielectric ceramics for energy storage applications[J].Journal of Advanced Dielectrics,2018,8(6):1830005.
    [17] YAO Z H,SONG Z L,HAO H,et al.Homogeneous/imhomogeneous-structured dielectric and their energystorage performances[J].Advanced Materials,2017,29(20):1601727.
    [18] LI Q,HAN K,GADINSKI M R,et al.High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites[J].Advanced Materials,2014,26(36):6244-6249.
    [19] XIAO S,XIU S M,SHEN B,et al.Microstructure evolution and energy storage of potassium strontium niobate boroaluminosilicate glass-ceramics by microwave crystallization[J].Journal of the European Ceramic Society,2016,36(16):4071-4076.
    [20] WANG Y F,CUI J,YUAN Q B,et al.Significantly enhanced breakdown strength and energy storage in sandwich-structured Barium Titanate/Poly(vinylidene fluoride)nanocomposites[J].Advanced Materials,2015,27(42):6658-6663.
    [21] ZHANG Q F,DAN Y,CHEN J,et al.Effect of composition and temperature on energy storage properties of(Pb,La)(Zr,Sn,Ti)O3antiferroelectric ceramics[J]. Ceramics International,2017,43(14):11428-11432.
    [22] ZHANG L,JIANG S L,FAN B Y,et al.Enhanced energy storage performance in(Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3anti-ferroelectric composite ceramics by Spark plasma sintering[J].Journal of Alloys and Compounds,2015,622:162-165.
    [23] LIU P,LI M Y,ZHANG Q F,et al.High thermal stability in PLZST anti-ferroelectric energy storage ceramics with the coexistence of tetragonal and orthorhombic phase[J].Journal of the European Ceramic Society,2018,38(16):5396-5401.
    [24] WANG H S,LIU Y C,YANG T Q,et al.Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions[J].Advanced Functional Materials,2019,29(7):1807321.
    [25] LIU P,ZHANG Y J,ZHU Y W,et al.Structure variation and energy storage properties of acceptormodified PBLZST antiferroelectric ceramics[J].Journal of the American Ceramic Society,2015,98(2):559-566.
    [26] ZHAO L,LIU Q,GAO J,et al.Lead-free antiferroelectric silver niobate tantalate with high energy storage performance[J].Advanced Materials,2017,29(31):1701824.
    [27] WANG G,LI J L,ZHANG X,et al.Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity[J].Energy&Environmental Science,2019,12(2):582-588.
    [28] HUANG W,CHEN Y,LI X,et al.Ultrahigh recoverable energy storage density and efficiency in barium strontium titanate-based lead-free relaxor ferroelectric ceramics[J].Applied Physics Letters,2018,113(20):203902.
    [29] YUAN Q B,LI G,YAO F G,et al.Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3lead-free relaxor ferroelectrics[J].Nano Energy,2018,52:203-210.
    [30] SHAO T Q,DU H L,MA H,et al.Potassium-sodium niobate based lead-free ceramics:novel electrical energy storage materials[J].Journal of Materials Chemistry A,2017,5(2):554-563.
    [31] ZHOU M X,LIANG R H,ZHOU Z Y,et al.Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3substitution strategy[J].Journal of Materials Chemistry A,2018,6(37):17896-17904.
    [32] LI J L,LI F,XU Z,et al.Multilayer lead-free ceramics capacitors with ultrahigh energy density and efficiency[J].Advanced Materials,2018,30(32):1802155.
    [33] LI F,ZHAI J W,SHEN B,et al.Simultaneously high-energy storage density and responsivity in quasihysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.2□0.1)TiO3ergodic relaxor ceramics[J].Materials Research Letters,2018,6(7):345-352.
    [34] LOVE G R.Energy storage in ceramic dielectric[J].Journal of the American Ceramic Society,1990,73(2):323-328.
    [35] LIU G,ZHANG L Y,WANG Z Y,et al.The doping effects of ZnNb2O6on the phase,microstructure and energy storage properties of(Sr0.98Ca0.02)TiO3 paraelectric ceramics[J].Ferroelectrics,2018,531(1):122-130.
    [36] LIU J F,ZHANG J H,WEI M,et al.Dielectric properties of manganese-doped TiO2 with different alkalifree glass contents for energy storage application[J].Journal of Materials Science:Materials in Electrons,2016,27(7):7680-7684.
    [37] WEI M,ZHANG J H,LIU J F,et al.Effect of multiple times pre-sintering on the dielectric properties of TiO2/glass composite[J].Journal of Materials Science:Materials in Electrons,2017,28(1):526-531.
    [38] MAURYA D,ZHOU Y,YAN Y K,et al.Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics with giant piezoelectric response[J].Journal of Materials Chemistry C,2013,1(11):2102-2111.
    [39] LI Y M,CHEN W,XU Q,et al.Piezoelectric and ferroelectric properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-BaTiO3piezoelectric ceramics[J].Materials Letters,2005,59(11):1361-1364.
    [40] MAURYA D,PRAMANICK A,AN K,et al.Enhanced piezoelectricity and nature of electric-field induced structural phase transformation in textured lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3ceramics[J].Applied Physics Letters,2012,100(17):172906.
    [41] ZHANG S T,KOUNGA A B,AULBACH E,et al.Giant strain in lead-free piezoceramics Na0.5Bi0.5TiO3-BaTiO3-K0.5Na0.5NbO3system[J].Applied Physics Letters,2007,91(11):112906.
    [42] KANG X Y,ZHAO Z H,LUE Y K,et al.BNT-based multi-layer ceramic actuator with enhanced temperature stability[J].Journal of Alloys and Compounds,2019,771:541-546.
    [43] BHATTACHARYYA R,OMAR S.Electrical conductivity study of B-site Ga doped non-stoichiometric sodium bismuth titanate ceramics[J].Journal of Alloys and Compounds,2018,746:54-61.
    [44] GAO F,DONG X L,MAO C L,et al.Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3lead-free anti-ferroelectric ceramics[J].Journal of the American Ceramic Society,2011,94(12):4382-4386.
    [45] GAO F,DONG X L,MAO C L,et al.c/aratio-dependent energy-storage density in(0.9-x)Bi0.5Na0.5TiO3-xBaTiO3-0.1K0.5 Na0.5 NbO3 lead-free anti-ferroelectric ceramics[J].Journal of the American Ceramic Society,2011,94(12):4162-4164.
    [46] CHEN P,CHU B J.Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified(Na1/2Bi1/2)Ba0.08TiO3ceramics[J].Journal of the European Ceramic Society,2016,36(1):81-88.
    [47] CAO W P,LI W L,DAI X F,et al.Large eletrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics[J].Journal of the European Ceramic Society,2016,36(3):593-600.
    [48] Xu Q,LI T M,HAO H,et al.Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3based ceramics[J].Journal of the European Ceramic Society,2015,35(2):545-553.
    [49] LIU D,TIAN C Y,MA C G,et al.Composition,electric-field and temperature induced domain evolution in lead-free Bi0.5 Na0.5 TiO3-BaTiO3-SrTiO3 solid solutions by piezoresponse force microscopy[J].Scripta Materialia,2016,123:64-68.
    [50] TIAN C Y,WANG F F,YE X,et al.Bipolar fatigue-resistant behavior in ternary Bi0.5Na0.5TiO3-BaTiO3-SrTiO3solid solutions[J].Scripta Materialia,2014,83:25-28.
    [51] SHI J,FAN H Q,LIU X,et al.Large electrostrictive strain in Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.2)TiO3solid solutions[J].Journal of the American Ceramic Society,2014,97(3):848-853.
    [52] SHI J,LIU X,TIAN W C.High energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-SrTi0.875Nb0.1O3leadfree relaxor ferroelectrics[J].Journal of Materials Science&Technology,2018,34(12):2371-2374.
    [53] MA W G,ZHU Y W,MARWAT M A,et al.Enhanced energy-storage performance with excellent stability under low electric fields in BNT-ST relaxor ferroelectric ceramics[J].Journal of Materials Chemistry C,2019,7(2):281-288.
    [54] DING J X,LIU Y F,LU Y N,et al.Enhanced energy-storage properties of 0.89Bi0.5 Na0.5TiO3-0.06BaTiO3-0.05K0.5 Na0.5 NbO3 lead-free anti-ferroelectric ceramics by two-step sintering method[J].Materials Letters,2014,114:107-110.
    [55] YE J J,LIU Y F,LU Y N,et al.Enhanced energy-storage properties SrTiO3doped(Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3lead-free antiferroelectric ceramics[J].Journal of Materials Science:Materials in Electrons,2014,25(10):4632-4637.
    [56] XU N,LIU Y F,YU Z L,et al.Enhanced energy storage properties of lead-free(1-x)(Bi1/2Na1/2)TiO3-xSrTiO3antiferroelectric ceramics by two-step sintering method[J].Journal of Materials Science:Materials in Electrons,2016,27(12):12479-12484.
    [57] YIN J,ZHANG Y X,LUE X,et al.Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics[J].Journal of Materials Chemistry A,2018,6(21):9823-9832.
    [58] PU Y P,ZHANG L,CUI Y F,et al.High energy storage density and optical transparency of microwave sintered homogeneous(Na0.5Bi0.5)(1-x)BaxTi(1-y)SnyO3 ceramics[J]. ACS Sustainable Chemistry&Engineering,2018,6(5):6102-6109.
    [59] MISHRA A,MAJUMDAR B,RANJAN R.A complex lead-free(Na,Bi,Ba)(Fe,Ti)O3single phase perovskite ceramic with a high energy-density and high discharge-efficiency for solid state capacitor applications[J].Journal of the European Ceramic Society,2017,37(6):2379-2384.
    [60] YANG H B,LIU P F,YAN F,et al.A novel lead-free ceramic with layered structure for high energy storage applications[J].Journal of Alloys and Compounds,2019,773:244-249.
    [61] QI H,ZUO R Z.Linear-like lead-free relaxor antiferroelectric Bi0.5Na0.5TiO3-NaNbO3 with giant energydensity/efficiency and super stability against temperature and frequency[J].Journal of Materials Chemistry A,2019,7(8):3971-3978.
    [62] DAI B W,ZHENG P,BAI W F,et al.Direct and converse piezoelectric grain-size effects in BaTiO3ceramics with different Ba/Ti ratios[J].Journal of the European Ceramic Society,2018,38(12):4212-4219.
    [63] HOSHINA T,HATTA S,TAKEDA H,et al.Grain-size effect on piezoelectric properties of BaTiO3ceramics[J].Japanese Journal of Applied Physics,2018,57(9):0902BB.
    [64] BRAJESH K,KALYANI A K,RANJAN R.Ferroelectric instabilities and enhanced piezoelectric response in Ce modified BaTiO3lead-free ceramics[J].Applied Physics Letters,2015,106(1):012907.
    [65] SUN J,WANG S T,TONG L,et al.Enhanced dielectric properties in(In,Nb)co-doped BaTiO3ceramics[J].Materials Letters,2017,200:51-54.
    [66] LEE S H,KIM D Y,KIM M K,et al.Electrical properties of Dy-doped BaTiO3-based ceramics for MLCC[J].Journal of Ceramic Processing Research,2015,16(5):495-498.
    [67] LUO Y,LIU X Y.High temperature NTC BaTiO3ceramic-resistors[J].Materials Letters,2005,59(29/30):3881-3884.
    [68] XU Q,ZHAN D,HUANG D P,et al.Effect of MgO-CaO-Al2O3-SiO2additive on dielectric properties of Ba0.95Sr0.05Zr0.2Ti0.8O3ceramics[J].Journal of Alloys and Compounds,2013,558:77-83.
    [69] MAHAJAN S,THAKUR O P,SREENIVAS K,et al.Effect of Nd doping on structural,dielectric and ferroelectric properties of Ba(Zr0.05Ti0.95)O3ceramic[J].Integrated Ferroelectrics,2010,122:83-89.
    [70] LUO B C,WANG X H,TIAN E K,et al.Chemical composition and temperature dependence of the energy storage properties of Ba1-xSrxTiO3ferroelectrics[J].Journal of the American Ceramic Society,2018,101(7):2976-2986.
    [71] ZHANG Q M,WANG L,LUO J,et al.Improved energy storage density in barium strontium titanate by addition of BaO-SiO2-B2O3glass[J].Journal of the American Ceramic Society,2009,92(8):1871-1873.
    [72] WANG Y R,PU Y P,CUI Y F,et al.Enhanced energy storage density of Ba0.4Sr0.6TiO3ceramics with additive of Bi2O3-B2O3-ZnO glass[J].Materials Letters,2017,201:203-206.
    [73] YUAN Q B,CUI J,WANG Y F,et al.Significant enhancement in breakdown strength and energy density of the BaTiO3/BaTiO3@SiO2layered ceramics with strong interface blocking effect[J].Journal of the European Ceramic Society,2017,37(15):4645-4652.
    [74] LIU M,CAO M H,ZENG F Z,et al.Fine-grained silica-coated barium strontium titanate ceramics with high energy storage[J].Ceramics International,2018,44(16):20239-20244.
    [75] HUANG Y H,LIU B,LIU X Q,et al.Defect dipoles induced high-energy storage density in Mn-doped BST ceramics prepared by spark plasma sintering[J].Journal of the American Ceramic Society,2019,102(4):1904-1911.
    [76] WU Y J,HUANG Y H,WANG N,et al.Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics[J].Journal of the European Ceramic Society,2017,37(5):2099-2104.
    [77] HUANG Y H,WU Y J,LIU B,et al.From core-shell Ba0.4Sr0.6TiO3@SiO2particles to dense ceramics with high energy storage performance by spark plasma sintering[J].Journal of Materials Chemistry A,2018,6(10):4477-4484.
    [78] GAO Y,LIU H X,YAO Z H,et al.Effect of layered structure on dielectric properties and energy storage density in xBa0.7 Sr0.3 TiO3-SrTiO3 multilayer ceramics[J].Ceramics International,2017,43(11):8418-8423.
    [79] ORIHARA H,RANDALL C A,TROLIER-MCKINSTRY S.High energy-density capacitors utilizing0.7BaTiO3-0.3BiScO3ceramics[J].Journal of the American Ceramic Society,2009,92(8):1719-1724.
    [80] LI F,ZHOU M X,ZHAI J W,et al.Novel barium titanate based ferroelectric relaxor ceramics with superior charge-discharge performance[J].Journal of the European Ceramic Society,2018,38(14):4646-4652.
    [81] WANG T,JIN L,LI C C,et al.Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3ceramics for energy storage applications[J].Journal of the American Ceramic Society,2015,98(2):559-566.
    [82] WU L W,Wang X H,Li L T.Lead-free BaTiO3-Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage[J].RSC Advances,2016,6(17):14273-14282.
    [83] KUMAR N,IONIN A,ANSELL T,et al.Multilayer ceramic capacitors based on relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3for temperature stable and high energy density capacitor applications[J].Applied Physics Letters,2015,106(25):252901.
    [84] ZHOU M X,LIANG R H,ZHOU Z Y,et al.Combining high energy efficiency and fast charge-discharge capability in novel BaTiO3based relaxor ferroelectric ceramic for energy-storage[J].Ceramics International,2019,45(3):3582-3590.
    [85] HU Q Y,JIN L,WANG T,et al.Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3bulk ceramics[J].Journal of Alloys and Compounds,2015,640:416-420.
    [86] WANG D F,KAKO T,YE J H.New series of solid-solution semiconductors(AgNbO3)1-x(SrTiO3)x with modulated band structure and enhanced visible-light photocatalytic activity[J].Journal of Physical and Chemistry C,2009,113(9):3785-3792.
    [87] LI G Q,KAKO T,WANG D F,et al.Composition dependence of the photophysical and photocatalytic properties of(AgNbO3)1-x(NaNbO3)xsolid solutions[J].Journal of Solid State Chemistry,2007,180(10):2845-2850.
    [88] ARNEY D,HARDY C,GREVE B,et al.Flux synthesis of AgNbO3:Effect of particle surfaces and sizes on photocatalytic activity[J].Journal of Photochemistry and Photobiology A:Chemistry,2010,214(1):54-60.
    [89] LI G Q,YAN S C,WANG Z Q,et al.Synthesis and visible light photocatalytic properties of polyhedronshaped AgNbO3[J].Dalton Transactions,2009,40:8519-8524.
    [90] YANG L F,LIU J B,CHANG H B,et al.Enhancing visible-light-induced photocatalytic activity of AgNbO3by loading Ag@AgCl nanoparticles[J].RSC Advances,2015,5(74):59970-59975.
    [91] KANIA A,ROLEDER K,LUKASZEWSKI M.The ferroelectric phase in AgNbO3[J].Ferroelectrics,1983,52(1):265-269.
    [92] SCIAU P,KANIA A,DKHIL B,et al.Structural investigation of AgNbO3phases using x-ray and neutron diffraction[J].Journal of Physics:Condensed Matter,2004,16(16):2795.
    [93] FU D,ENDO M,TANIGUCHI H,et al.AgNbO3 A lead-free material with large polarization and electromechanical response[J].Applied Physics Letters,2007,90(25):252907.
    [94] ZHAO L,LIU Q,ZHANG S J,et al.Lead-free AgNbO3anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification[J].Journal of Material Chemistry C,2016,4(36):8380-8384.
    [95] ZHAO L,GAO J,LIU Q,et al.Silver niobate lead-free antiferroelectric ceramics:enhancing energy storage density by B-site doping[J].ACS Applied Materials&Interfaces,2018,10(1):819-826.
    [96] HAN K,LUO N N,JING Y,et al.Structure and energy storage performance of Ba-modified AgNbO3leadfree antiferroelectric ceramics[J].Ceramics International,2019,45(5):5559-5565.
    [97] TIAN Y,JIN L,ZHANG H F,et al.Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage[J].Journal of Materials Chemistry A,2017,5(33):17525-17531.
    [98] GAO J,ZHANG Y C,ZHAO L,et al.Enhanced antiferroelectric phase stability in La-doped AgNbO3:perspectives from the microstructure to energy storage properties[J].Journal of Materials Chemistry A,2019,7(5):2225-2232.
    [99] LI S,NIE H C,WANG G S,et al.Significantly enhanced energy storage performance of rare-earth-modified silver niobate lead-free antiferroelectric ceramics via local chemical pressure tailoring[J].Journal of Materials Chemistry C,2019,7(6):1551-1560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700