可控变形复合材料结构4D打印
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Programmable Morphing Composite Structures by 4D Printing
  • 作者:田小永 ; 王清瑞 ; 李涤尘 ; 卢秉恒
  • 英文作者:TIAN Xiaoyong;WANG Qingrui;LI Dichen;LU Bingheng;State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi'an Jiaotong University;Shaanxi Rapid Manufacturing Engineering Technology Research Center;
  • 关键词:4D打印 ; 3D打印 ; 增材制造 ; 可控变形 ; 复合材料 ; 连续纤维
  • 英文关键词:4D printing;;3D printing;;Additive manufacturing;;Controllable deformation;;Composites;;Continuous fiber
  • 中文刊名:HKGJ
  • 英文刊名:Aeronautical Manufacturing Technology
  • 机构:西安交通大学机械制造系统工程国家重点实验室;陕西省快速制造工程技术研究中心;
  • 出版日期:2019-01-15
  • 出版单位:航空制造技术
  • 年:2019
  • 期:v.62
  • 基金:国家自然科学基金(51575430,51811530107);; 国家重点研发计划(2017YFB1103401,2016YFB1100902);; 陕西省快速制造工程技术研究中心(2017HBGC-06);; 创新人才推进计划–青年科技新星(2017KJXX–14);; 中央高校基本科研业务费专项资金
  • 语种:中文;
  • 页:HKGJ2019Z1012
  • 页数:8
  • CN:Z1
  • ISSN:11-4387/V
  • 分类号:22-29
摘要
4D打印技术是一种采用3D打印工艺方法实现具有对外界刺激响应功能、可变形状或性能的智能结构增材制造技术。综述了4D打印技术的基本工艺方法,如形状记忆材料4D打印、仿生复合材料结构4D打印、外场驱动智能结构4D打印等;分析了现有4D打印技术在变形过程不连续、制备难度较大、难以实现变形过程可控等方面存在的问题;提出了连续纤维增强复合材料的4D打印策略,展示了任意可展曲面结构的设计与4D打印流程;分析了4D打印技术未来在航空航天、生物医疗及软体机器人等领域的潜在应用价值。
        4D printing is a kind of additive manufacturing which uses 3D printing to make the printed structure have the function of responding to external stimulus, shape changing or performance changing. The processes of 4D printing technology, such as 4D printing based on shape memory materials, 4D printing based on biomimetic composite structures and 4D printing based on field-driven smart structures, are summarized. The problems of existing 4D printing technology, such as discontinuous deformation process, difficult to prepare and difficult to realize controllable deformation, are analyzed. The 4D printing strategy for composites with continuous fibers reinforced is proposed, and the 4D printing of arbitrary deployable surface structure is realized by controlling the deformation of composites. Finally, the potential applications of 4D printing technology in aerospace, bio-medicine and soft robots are analyzed.
引文
[1]TIBBITS S.4D printing:multi-material shape change[J].Architectural Design,2014,84:116-121.
    [2]PEI E.4D printing:dawn of an emerging technology cycle[J].Assembly Automation,2014,34:310-314.
    [3]PEI E.4D printing-revolution or fad?[J].Assembly Automation,2014,34:123-127.
    [4]GE Q,HOSEIN S A,HOWON L,et al.Multimaterial 4D printing with tailorable shape memory polymers[J].Scientific Reports,2016,6:1-11.
    [5]DING Z,YUAN C,PENG X,et al.Direct 4D printing via active composite materials[J].Science Advance,2017,3:1-6.
    [6]BEHL M,ANDREAS L.Shape-memory polymers[J].Materials Today,2007,10:20-28.
    [7]REYSSAT E,MAHADEVAN L.Hygromorphs:from pine cones to biomimetic bilayers[J].Journal of the Royal Society Interface,2009,6(39):951-957.
    [8]ELBAUM R,ZALTZMAN L,BURGERT I,et al.The role of wheat awns in the seed dispersal unit[J].Science,2007,316:884-886.
    [9]ARMON S,EFRATI E,KUPFERMANR,et al.Geometry and mechanics in the opening of chiral seed pods[J].Science,2011,333(6050):1726-1730.
    [10]IONOV L.Bioinspired microorigami by self-folding polymer films[J].Macromolecular Chemistry and Physics,2013,214:1178-1183.
    [11]SCHMIED J U,LE FERRAND H,ERMANNI P,et al.Programmable snapping composites with bio-inspired architecture[J].Bioinspiration&Biomimetics,2017,12:1-11.
    [12]GLADMAN A S,MATSUMOTOE A,NUZZO R G,ET Al.Biomimetic 4Dprinting[J].Nature Materials,2016,15:413-419.
    [13]ERB R M,LIBANORI R,ROTHFUCHSN,et al.Composites reinforced in three dimensions by using low magnetic fields[J].Science,2012,335:199-204.
    [14]LOPESC S,CAMANHOP P,GüRDAL Z,et al.Progressive failure analysis of tow-placed,variable-stiffness composite panels[J].International Journal of Solids and Structures,2007,44:8493-8516.
    [15]KIM S W,KOH J S,LEE J G,et al.Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface[J].Bioinspiration&Biomimetics,2014,9:1-14.
    [16]KUKSENOK O,BALAZS A C.Stimuli-responsive behavior of composites integrating thermo-respon sivegels with photo-responsive fibers[J].Materials Horizons,2016,3:53-62.
    [17]TIAN X,LIU T,YANG C,et al.Interface and performance of 3D printed continuous carb on fiberre in forced P L Acomposites[J].Composites:Part A,2016,88:198-205.
    [18]YANG C,TIAN X,LIU T,et al.3D printing for continuous fiber reinforced thermoplastic composites mechanism and performance[J].Rapid Prototyping Journal,2017,23:209-215.
    [19]RYOSUKE M,MASAHITO U,MASAKI N,et al.Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J].Scientific Reports,2016,6:1-7.
    [20]YANG C,WANG B,LI D,et al.Modelling and characterisation for the responsive performance of CF/PLA and CF/PEEK smart materials fabricated by 4D printing[J].Virtual and Physical Prototyping,2017,12:69-76.
    [21]WANG Q,TIAN X,HUANG L,et al.Programmable morphing composites with embedded continuous fibers by 4D printing[J].Materials&Design,2018,155:404-413.
    [22]HOU Z,TIAN X,ZHANG J,et al3D printed continuous fibre reinforced composite corrugated structure[J].Composite Structures,2018,184:1005-1010.
    [23]WU J,YUAN C,DING Z,et al.Multi-shape active composites by 3D printing of digital shape memory polymers[J].Scientific Reports,2016,6:1-11.
    [24]LI Y C,ZHANG Y S,AKPE KA,et al.4D bioprinting:the next-generation technology for biofabrication enabled by stimuli-responsive materials[J].Biofabrication,2016,9(1):012001.
    [25]魏洪秋,万雪,刘彦菊,等.4D打印形状记忆聚合物材料的研究现状与应用前景[J].中国科学:技术科学,2018,48(1):2-16.WEI Hongqiu,WAN Xue,LIU Yanju,et al.4D printing of shape memory polymers:research status and application prospects[J].Scientia Sinica Technologica,2018,48(1):2-16
    [26]CAPUTOA M P,BERKOWITZB AE,ARMSTRONGC A,et al.Virgil 4D printing of netshapeparts made from N i-M n-G a magnetic shape-memory alloys[J].Additive Manufacturing,2018,21:579-588.
    [27]HAN M,AHN S.Blooming knit flowers:loop-linked soft morphing structures for soft robotics[J].Advanced Materials,2017,29(13):1606580.
    [28]YUAN C,ROACH J,DUNN C K,et al.3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers[J].Soft Matter,2017,13(33):5558-5568.
    [29]HU W,LUM G Z,MASTRANGELIM,et al.Small-scale soft-bodied robot with multimodal locomotion[J].Nature,2018,554(7690):81-85.
    [30]GARSTECKI P,TIERNO P,WEIBELD B,et al.Propulsion of flexible polymer structures in a rotating magnetic field[J].Journal of Physics:Condensed Matter,2009,21(20):204110.
    [31]ZHAO X,KIM J,CEZAR C A,et al.Active scaffolds for on-demand drug and cell delivery[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108:67-72.
    [32]KIM J,CHUNG S E,CHOI S,et al.Programming magnetic anisotropy in polymeric microactuators[J].Nature Materials,2011,10(10):747-752.
    [33]KIM Y,YUK H,ZHAO R,et al.Printing ferromagnetic domains for untethered fast-transforming soft materials[J].Nature,2018,558:274-279.
    [34]LIU G,ZHAO Y,WU G,et al.Origami and 4D printing of elastomer-derived ceramic structures[J].Science Advances,2018,4:1-10.
    [35]AKBARI S,SAKHAEI A H,KOWSARI K,et al.Enhanced multimaterial 4Dprinting with active hinges[J].Smart Materials and Structures,2018,27(6):65027.
    [35]LIU Y,DU H,LIU L,et al.Shape memory polymers and their composites in aerospace applications:a review[J].Smart Materials and Structures,2014,23:1-22.
    [36]KANG J,WANG L,YANG C,et al.Custom design and biomechanical analysis of3D-printed PEEK rib prostheses[J].Biomechanics and Modeling in Mechanobiology,2018,17(4):1083-1092.
    [37]REIGHARD C L,HOLLISTER SJ,ZOPF D A.Auricular reconstruction from rib to 3D printing[J].Journal of 3D Printing in Medicine,2018,2(1):35-41.
    [38]SHI W,SUN M,HU X,e t a l.Structurally and functionally optimized silkfibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo[J].Advanced Materials,2017,29(29):1701089.
    [39]RUS D,TOLLEY M T.Design,fabrication and control of soft robots[J].Nature,2015,521(7553):467-475.
    [40]SCHAFFNER M,FABER J A,PIANEGONDA L,et al.3D printing of robotic soft actuators with programmable bioinspired architectures[J].Nature Communications,2018,doi:10.1038/s41467-018-03216-w.
    [41]WEHNER M,TRUBYR L,FITZGERALD D J,et al.An integrated design and fabrication strategy for entirely soft,autonomous robots[J].Nature,2016,536(7617):451-455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700