谱域相位显微成像的相位解包裹
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phase Unwrapping in Spectral Domain Phase Microscopy
  • 作者:周红仙 ; 朱礼达 ; 赵玉倩 ; 马振鹤 ; 王毅
  • 英文作者:Zhou Hongxian;Zhu Lida;Zhao Yuqian;Ma Zhenhe;Wang Yi;Experiment Education Center,Northeastern University at Qinhuangdao;School of Electrical Engineering,Yanshan University;School of Control Engineering,Northeastern University at Qinhuangdao;
  • 关键词:成像系统 ; 谱域相位显微成像 ; 定量相位成像 ; 相位解包裹 ; 合成波长
  • 英文关键词:imaging systems;;spectral domain phase microscopy;;quantitative phase imaging;;phase unwrapping;;synthetic wavelength
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:东北大学秦皇岛分校实验教育中心;燕山大学电气工程学院;东北大学秦皇岛分校控制工程学院;
  • 出版日期:2018-10-20 11:57
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.443
  • 基金:国家自然科学基金(61771119,61275214,31170956);; 河北省自然科学基金(A2015501065,H2015501133);; 中央高校基本科研业务费(N172304034)
  • 语种:中文;
  • 页:GXXB201902016
  • 页数:7
  • CN:02
  • ISSN:31-1252/O4
  • 分类号:133-139
摘要
提出了一种应用于谱域相位显微成像的相位解包裹方法。利用傅里叶变换及合成波长相位计算方法分别得到具有较小噪声的包裹相位和具有较大噪声的解包裹相位,利用解包裹相位与包裹相位之差计算包裹相位的包裹次数,以此对具有较小噪声的包裹相位进行解包裹。该方法消除了现有方法引入的边界分段错误。建立了一种基于合成波长的谱域相位显微成像系统,使用压电位移台定量验证了该系统可以用于大梯度边界的相位解包裹,并进行了红细胞和倾斜镜面的相位成像。该系统在空气中的位移灵敏度为0.043 nm。
        A phase unwrapping method used in the spectral domain phase microscopy(SDPM) is proposed. A wrapped phase with a small noise and an unwrapped phase with a big noise are obtained by using respectively the Fourier transform(FT) method and the synthetic-wavelength phase calculation method. The wrapped number of the wrapped phase is calculated from the difference between the unwrapped and wrapped phases, and thus the unwrapping of the wrapped phase with a small noise is conducted. The presented method eliminates the boundary segmentation error introduced in the existing phase unwrapping methods. An SDPM system based on synthetic-wavelength is established. A piezoelectric translation stage is used to quantitatively verify that this system is capable of accurately unwrapping the phase with a large gradient boundary. The phase imaging of red blood cells and tilted mirror surfaces is also performed. The displacement sensitivity of this system in air is 0.043 nm.
引文
[1] Wang Y, Guo Z, Zhu L D, et al. Nanoscale surface topography imaging using phase-resolved spectral domain optical coherence tomography[J]. Acta Physica Sinica, 2017, 66(15): 154202. 王毅, 郭哲, 朱立达, 等. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像[J]. 物理学报, 2017, 66(15): 154202.
    [2] Groot P D. Principles of interference microscopy for the measurement of surface topography[J]. Advances in Optics and Photonics, 2015, 7(1): 1-65.
    [3] Bruzzone A A G, Costa H L, Lonardo P M, et al. Advances in engineered surfaces for functional performance[J]. CIRP Annals, 2008, 57(2): 750-769.
    [4] Leach R, Giusca C L, Naoi K. Development and characterization of a new instrument for the traceable measurement of areal surface texture[J]. Measurement Science and Technology, 2009, 20(12): 125102.
    [5] Wang D P, He C L, Stoykovich M P, et al. Nanoscale topography influences polymer surface diffusion[J]. ACS Nano, 2015, 9(2): 1656-1664.
    [6] Park Y K, Diez-Silva M, Popescu G, et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum[J]. Proceedings of the National Academy of Sciences, 2008, 105(37): 13730-13735.
    [7] Richards O W. Phase difference microscopy[J]. Nature, 1944, 154(3917): 672-672.
    [8] Gundlach H. Phase contrast and differential interference contrast instrumentation and applications in cell, developmental, and marine biology[J]. Optical Engineering, 1993, 32(12): 3223-3228.
    [9] Creath K. Phase-shifting speckle interferometry[J]. Applied Optics, 1985, 24(18): 3053-3058.
    [10] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 1999, 24(5): 291-293.
    [11] Mann C J, Yu L F, Lo C M, et al. High-resolution quantitative phase-contrast microscopy by digital holography[J]. Optics Express, 2005, 13(22): 8693-8698.
    [12] Popescu G, Deflores L P, Vaughan J C, et al. Fourier phase microscopy for investigation of biological structures and dynamics[J]. Optics Letters, 2004, 29(21): 2503-2505.
    [13] Lue N, Choi W, Popescu G, et al. Quantitative phase imaging of live cells using fast Fourier phase microscopy[J]. Applied Optics, 2007, 46(10): 1836-1842.
    [14] Ikeda T, Popescu G, Dasari R R, et al. Hilbert phase microscopy for investigating fast dynamics in transparent systems[J]. Optics Letters, 2005, 30(10): 1165-1167.
    [15] Popescu G, Ikeda T, Best C, et al. Erythrocyte structure and dynamics quantified by Hilbert phase microscopy[J]. Journal of Biomedical Optics, 2005, 10(6): 060503.
    [16] Zhang B, Wang K R, Yan B B, et al. Phase unwrapping method based on dual wavelength and 3×3 fiber coupler with interferometric measurement[J]. Acta Optica Sinica, 2018, 38(4): 0412004. 张冰, 王葵如, 颜玢玢, 等. 基于双波长和3×3光纤耦合器的干涉测量相位解卷绕方法[J]. 光学学报, 2018, 38(4): 0412004.
    [17] Qian X F, Rao F, Li X H, et al. Accurate least-squares phase unwrapping algorithm[J]. Chinese Journal of Lasers, 2012, 39(2): 0209001. 钱晓凡, 饶帆, 李兴华, 等. 精确最小二乘相位解包裹算法[J]. 中国激光, 2012, 39(2): 0209001.
    [18] Liu S, Yang L X. Regional phase unwrapping method based on fringe estimation and phase map segmentation[J]. Optical Engineering, 2007, 46(5): 051012.
    [19] Goldstein G, Creath K. Quantitative phase microscopy: automated background leveling techniques and smart temporal phase unwrapping[J]. Applied Optics, 2015, 54(16): 5175-5185.
    [20] Joo C, Akkin T, Cense B, et al. Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging[J]. Optics Letters, 2005, 30(16): 2131-2133.
    [21] Choma M A, Ellerbee A K, Yang C, et al. Spectral-domain phase microscopy[J]. Optics Letters, 2005, 30(10): 1162-1164.
    [22] Hendargo H C,Zhao M T, Shepherd N, et al. Synthetic wavelength based phase unwrapping in spectral domain optical coherence tomography[J]. Optics Express, 2009, 17(7): 5039-5051.
    [23] Zhang J, Rao B, Yu L F, et al. High-dynamic-range quantitative phase imaging with spectral domain phase microscopy[J]. Optics Letters, 2009, 34(21): 3442-3444.
    [24] Yan Y Z, Ding Z H, Shen Y, et al. High-sensitive and broad-dynamic-range quantitative phase imaging with spectral domain phase microscopy[J]. Optics Express, 2013, 21(22): 25734-25743.
    [25] Gass J, Dakoff A, Kim M K. Phase imaging without 2π ambiguity by multiwavelength digital holography[J]. Optics Letters, 2003, 28(13): 1141-1143.
    [26] Ma Z H, He Z H, Wang S. Practical approach for dispersion compensation in spectral-domain optical coherence tomography[J]. Optical Engineering, 2012, 51(6): 063203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700