某铀矿区水稻土—地表水铀含量对稻米铀含量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Uranium Contents of Paddy Soil and Surface Water on Uranium Contents of Rice in a Uranium Mining Area
  • 作者:向龙 ; 刘平辉 ; 张淑梅 ; 魏长帅
  • 英文作者:XIANG Long;LIU Ping-hui;ZHANG Shu-mei;WEI Chang-shuai;College of Earth Sciences,East China University of Technology;State Key Laboratory Breeding Base of Nuclear Resources and Environment,Ministry of Education,East China University of Technology;No.2 Team of Jiangxi Nonferrous Metal Geological Exploration Bureau;Geological Team 326 of Geology and Mineral Exploration Bureau in Anhui Province;
  • 关键词:铀矿区 ; 稻米 ; 铀含量 ; 水稻土 ; 地表水 ; 成因 ; 铀迁移
  • 英文关键词:uranium mining;;rice;;uranium content;;paddy soil;;surface water;;cause of formation;;uranium migration
  • 中文刊名:METE
  • 英文刊名:Nonferrous Metals(Extractive Metallurgy)
  • 机构:东华理工大学地球科学学院;东华理工大学省部共建核资源与环境国家重点实验室培育基地;江西有色地质勘查二队;安徽省地质矿产勘查局326地质队;
  • 出版日期:2018-07-12
  • 出版单位:有色金属(冶炼部分)
  • 年:2018
  • 基金:国家自然科学基金资助项目(41261081);; 江西省自然科学基金资助项目(2011ZBAB203009)
  • 语种:中文;
  • 页:METE201807016
  • 页数:7
  • CN:07
  • ISSN:11-1841/TF
  • 分类号:71-77
摘要
以水稻土—地表水铀含量为视角,从水稻土剖面铀含量分布规律、水稻土与下伏岩体稀土元素特征、不同河流不同河段水稻土—地表水—稻米铀含量特征、水稻土与稻米铀含量关系4个方面研究721铀矿区稻米铀含量成因。结果表明,水稻土剖面铀含量从表层至半风化花岗质基岩层呈明显降低的特征,说明水稻土铀含量高的原因不是土壤母质铀含量高;岩石与水稻土稀土元素标准化模式均表现为向右倾斜型,均属轻稀土富集型,轻稀土分馏明显,表明水稻土为还原环境,吸附作用较强;不同河流不同河段水稻土—地表水—稻米铀含量平均值的特性均为上游最低、中游最高、下游次之。铀矿区地表水环境符合铀元素在水稻土中被平衡吸附的动力学条件,有利于铀元素在矿区内河流中游地区的水稻土中沉淀富集;正在采矿区水稻土与稻米铀含量具有高度的空间耦合性,呈指数正相关关系,相关系数0.749。矿区内河流沿岸稻米铀含量的分布特征是由铀元素的迁移途径决定的"采矿活动(铀尾矿露天堆放)→地表水→水稻土"。
        In order to explore contributing factors for uranium contents in rice of a uranium mining area,distribution of uranium contents in paddy soil profiles,REE characteristics in paddy soils and underlying bedrock,characteristics of uranium contents of paddy soil,surface water,and rice in different reaches of two rivers,and relationship between uranium contents of paddy soils and rice were investigated from perspective of uranium content characteristics in paddy soil and surface water.The results show that uranium contents of paddy soil profiles significantly drop from surface of paddy soil to semi-weathering of granitic bedrock,which means high uranium content in paddy soil is not due to high content of uranium in the soil parent material.The normalized patterns of REE in rocks and paddy soils are basically the same,and are characterized by enrichment of LREE and depletion of HREE,indicating reductive environment of paddy soil with strong adsorption.The average value of uranium contents in surface water,paddy soil and rice from different reaches shows the highest in the midstream,the lower in the downstream,and the lowest in the upstream.The environment of surface water in uranium mining area is in accordance with dynamic conditions of a large amount of equilibrium adsorption of uranium elements in paddy soil,which is beneficial to precipitation and enrichment of uranium in paddy soil in the midstream exploiting mine area.There is a high spatial coupling of uranium content in rice and paddy soil,and a exponential function regression equation with correlation coefficient of 0.749 can be established.All researches confirm the migration path of uranium of first in uranium tailings,then in surface water;the third in paddy soil and at last in rice,which contributes to the characteristics of uranium contents in rice.Thus,uranium content of rice in middlestream area is the highest,followed by downstream area,and the lowest is in upstream area.
引文
[1]覃国秀,刘庆成,陈宁,等.某矿山天然放射性核素的调查[J].世界核地质科学,2008,25(1):54-56.
    [2]蒋经乾,李玲,占凌之,等.某铀矿田周边水放射性分布特征及其评价[J].有色金属(冶炼部分),2015(11):60-63.
    [3]齐文,高柏,陈井影,等.某铀尾矿库周边水环境中铀的分布特征及评价[J].有色金属(冶炼部分),2016(5):53-56.
    [4]张彬,冯志刚,马强,等.广东某铀废石堆周边土壤中铀污染特征及其环境有效性[J].生态环境学报,2015,24(1):156-162.
    [5]闫冬,何映雪,丁库克,等.某铀矿周边常用蔬菜铀富集水平的调查分析[J].中国辐射卫生,2017,26(4):401-403.
    [6]FAVAS P J C,PRATAS J,MITRA S,et al.Biogeochemistry of uranium in the soil-plant and waterplant systems in an old uranium mine[J].Science of the Total Environment,2016,568:350-368.
    [7]杨庆坤,郭福生,周万蓬,等.江西相山矿田铀铅锌多金属年代学特征及成矿模式[J].地学前沿,2017,24(5):283-298.
    [8]郭福生,杨庆坤,孟祥金,等.江西相山酸性火山—侵入杂岩体地球化学特征与岩石成因[J].地质学报,2016,90(4):769-784.
    [9]刘平辉,魏长帅,张淑梅,等.华东某铀矿区水稻土放射性核素铀污染评价[J].土壤通报,2014,45(6):1517-1521.
    [10]向龙,刘平辉,张淑梅.华东某铀矿区地表水中放射性核素铀含量特征分析[J].地球与环境,2016,44(4):455-461.
    [11]向龙,刘平辉,杨迎亚.华东某铀矿区稻米中放射性核素铀污染特征及健康风险评价[J].长江流域资源与环境,2017,26(3):419-427.
    [12]向龙,刘平辉,李欣.基于GIS的华东某铀矿区水冶厂周边稻米中重金属的污染评价及分布差异[J].中国科技论文,2017,12(3):312-318,326.
    [13]向龙.相山铀矿区稻米放射性核素铀含量研究[D].南昌:东华理工大学,2017.
    [14]周秀丽.某铀矿区土壤放射性核素铀形态分布特征及其生物有效性研究[D].南昌:东华理工大学,2016.
    [15]孙文良.江西咸口岩体地质地球化学及含铀性特征[D].南昌:东华理工大学,2014.
    [16]黎彤.化学元素的地球丰度[J].地球化学,1976,5(3):167-174.
    [17]窦小平.相山火山盆地岩石稀土元素分布特征及其成因探讨[J].铀矿地质,2005,21(6):338-344.
    [18]高效江,章申,王立军.赣南富稀土矿区农田土壤中稀土元素的环境地球化学特征[J].土壤与环境,2001,10(1):11-13.
    [19]吴盾,孙若愚,刘桂建.淮南朱集井田二叠纪煤中稀土元素地球化学特征及其地质解释[J].地质学报,2013,87(8):1189-1166.
    [20]刘贝,黄文辉,敖卫华,等.沁水盆地晚古生代煤中稀土元素地球化学特征[J].煤炭学报,2015,40(12):2916-2926.
    [21]李爽,倪师军,张成江.铀在土壤中的吸附动力学[J].桂林工学院学报,2007,19(1):49-52.
    [22]胡立,梁斌,周敏娟.铀在土壤中的吸附动力学[J].四川环境,2011,30(1):21-25.
    [23]华恩祥,张卫民,曾云嵘,等.某铀矿下游河流水化学特征与铀的分布特征分析[J].有色金属(冶炼部分),2017(3):62-66.
    [24]李富荣,文典,王富华,等.广东地区芸薹类叶菜-土壤镉污染相关性分析及土壤镉限量值研究[J].生态环境学报,2016,25(4):705-710.
    [25]邵云,李春喜,李向力,等.土壤—小麦系统中5中重金属含量的相关分析[J].河南农业科学,2007,6(5):25-28.
    [26]陈凤,董泽琴,王程程,等.锌冶炼区耕地土壤和农作物重金属污染状况及风险评价[J].环境科学,2017,38(10):4360-4369.
    [27]齐雁冰,楚万林,蒲洁,等.陕北某化工企业周围污灌区土壤—作物系统重金属积累特征及评价[J].环境科学,2015,36(4):1453-1460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700