基于环境容纳量的区域性养殖容量评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carrying Capacity of Regional Aquaculture Based on Environmental Capacity
  • 作者:刘梅 ; 原居林 ; 倪蒙 ; 何海生 ; 叶雪平 ; 顾志敏
  • 英文作者:LIU Mei;YUAN Ju-lin;NI Meng;HE Hai-sheng;YE Xue-ping;GU Zhi-min;Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries;College of Fisheries and Life Science, Shanghai Ocean University;
  • 关键词:养殖容量 ; 环境容纳量 ; 磷负荷 ; 生态养殖
  • 英文关键词:carrying capacity of regional aquaculture;;environmental capacity;;phosphorus loading;;ecological breeding
  • 中文刊名:SCAN
  • 英文刊名:Journal of Hydroecology
  • 机构:农业部淡水渔业健康养殖重点实验室浙江省淡水水产遗传育种重点实验室浙江省淡水水产研究所;上海海洋大学水产与生命科学学院;
  • 出版日期:2019-03-15
  • 出版单位:水生态学杂志
  • 年:2019
  • 期:v.40
  • 基金:国家科技支撑计划-滩涂养殖模式优化及其水域环境调控技术研究与示范(2015BAD13B04)
  • 语种:中文;
  • 页:SCAN201902005
  • 页数:8
  • CN:02
  • ISSN:42-1785/X
  • 分类号:29-36
摘要
针对淡水养殖池塘养殖水体及周边水域水质日趋恶化的现状,为了保证水产养殖业的可持续发展,亟需开展养殖容量相关方面的研究,将主要养殖品种面积和密度控制在最佳的范围内。以浙江南浔区为研究区域,通过调查该区域水环境现状和6种主要养殖模式养殖特点,计算了该区域水体总磷的环境容纳量,再根据单位养殖模式排污量初步评估了该区域主要养殖品种的养殖容量。结果显示:(1)南浔区水环境的磷为限制因子;(2)常规鱼、大口黑鲈(Micropterus salmoides)、乌鳢(Ophiocephalus argus)、翘嘴鲌(Culter alburnus)、中华鳖(Trionyx Sinensis)和青鱼(Mylopharyngodon piceus)单位产磷量分别为0.26、0.70、0.73、0.17、0.33和0.22 g/kg;(3)在II类水质前提下,常规鱼、大口黑鲈、乌鳢、翘嘴鲌、中华鳖、青鱼养殖塘可接受的最大磷负荷为7.38、5.79、2.36、1.82、1.51、2.52 t,其对应养殖容量分别为28 370、8 271、3 236、10 698、11 648、9 685 t;(4)养殖容量模型参数敏感性分析表明,磷滞留系数、换水系数和外河磷浓度敏感度系数分别为0.365、0.364和-0.271;区域养殖容量的合理评估可为生态渔业的发展提供科学依据。
        Evaluation of regional aquaculture capacity, based on environmental capacity, is necessary to achieve optimal densities for primary breeding species, reduce pollution from aquaculture and support sustainable develop in aquaculture. The Nanxun district of Huzhou city in Zhejiang Province was selected as the research area, where there is an aquacultural area of 5 946.71 hm~2 with an annual yield of 90 000 t. In May, August and November 2015, ten monitoring sites were established to investigate the condition of aquaculture and the water environment at Nanxun District and determine the pollution discharge per unit production of six primary aquaculture modes. Based on the results, an aquaculture capacity model was constructed, taking phosphorus loads and Grade II water quality standards as the restricting condition. The model was then used to calculate the optimal ecological capacity of the six aquaculture modes. Results show(1) phosphorus limits water quality in Nanxun district;(2) the phosphorus discharge per unit production for the six primary aquacuture modes(the four major Chinese carps, Micropterus salmoides, Ophiocephalus argus Cantor, Culter alburnus Basilewsky, Trionyx Sinensi and Mylopharyngodon piceus) were 0.26 g/kg, 0.70 g/kg, 0.73 g/kg, 0.17 g/kg, 0.33 g/kg and 0.22 g/kg, respectively;(3) The corresponding maximum acceptable P-loading(P_(mac)) for the six primary aquaculture modes were 7.38 t, 5.79 t, 2.36 t, 1.82 t, 1.51 t and 2.52 t and the corresponding carrying capacities were 28 370 t, 8 271 t, 3 236 t, 10 698 t, 11 648 t and 9 685 t. Parameter sensitivity analysis of the aquaculture capacity model was carried out using Markov Chain Monte Carlo(MCMC) methods and the sensitivity coefficients for the phosphorus retention rate, water exchange coefficient and phosphorus concentration in the river were, respectively, 0.365, 0.364 and-0.271. These values indicate that the regional aquaculture capacity estimates, based on TP meeting Grade II water quality standards, are reasonable and provide a scientific reference for decision making in relevant administrative departments.
引文
鲍旭腾,徐皓,张建华,等, 2012. 水产养殖面源污染控制的最佳管理实践[J]. 南方水产科学, 8 (3):79-86.
    边蔚,胡晓波,田在锋,等, 2011. 白洋淀水产养殖容量研究[J]. 河北大学学报(自然科学版), 31(1):79-84.
    方建光,匡世焕,孙慧玲,等,1996. 桑沟湾栉孔扇贝养殖容量的研究[J]. 海洋水产研究,17(2):18-30.
    韩士群,严少华,范成新, 2008. 水产养殖废水循环利用及多余藻类生物量资源化[J]. 自然资源学报, 23(4):560-567.
    韩涛,翟淑华,胡维平,等,2013. 太湖氮、磷自净能力的实验与模型模拟[J]. 环境科学,34(10):3862-3871.
    胡振雄, 2013. 凡纳滨对虾-金钱鱼-蕹菜综合养殖模式的初步探讨[D]. 上海:上海海洋大学.
    黄翔峰,王珅,陈国鑫,等, 2016. 人工湿地对水产养殖废水典型污染物的去除[J]. 环境工程学报, 10(1):12-20.
    冀泽华,冯冲凌,吴晓芙,等, 2016. 人工湿地污水处理系统填料及其净化机理研究进展[J]. 生态学杂志, 35( 8) : 2234-2243.
    金刚,李钟杰,谢平, 2003. 草型湖泊河蟹养殖容量初探[J]. 水生生物学报, 27(4):345-351.
    李庆彪,1999. 栉孔扇贝大量死亡的原因及对策[J]. 齐鲁渔业, (5):4-5.
    李树国, 2005. 内陆水产养殖的水域污染及其防治对策[J]. 水产科学, 24(3):34-35.
    刘剑昭,李德尚,董双林,2000. 关于水产养殖容量的研究[J]. 海洋科学, 24(9):33-35.
    刘乾甫,赖子尼,杨婉玲,等,2014. 珠三角地区密养淡水鱼塘水质状况分析与评价[J]. 南方水产科学, 10(6):36-43.
    刘庆余, 1993. 紫贻贝养殖的环境容纳量问题[J]. 水产科学, 12(9):15-17.
    马雪健, 刘大海, 胡国斌,等, 2016. 多营养层次综合养殖模式的发展及其管理应用研究[J]. 海洋开发与管理, 33(4):74-78.
    史铁锤,王飞儿,方晓波, 2010. 基于WASP的湖州市环太湖河网区水质管理模式[J]. 环境科学学报, 30(3):631-640.
    唐启升, 方建光, 张继红,等, 2013. 多重压力胁迫下近海生态系统与多营养层次综合养殖[J]. 渔业科学进展, 34(1):1-11.
    唐启升,丁晓明,王清印,等, 2014. 我国水产养殖业绿色、可持续发展保障措施与政策建议[J]. 中国渔业经济, 32(2):5-11.
    杨红生,张福绥,1999. 浅海筏式养殖系统贝类养殖容量研究进展[J]. 水产学报,23(1):84-90.
    杨婉玲,赖子尼,刘乾甫,等, 2014. 不同养殖品种池塘化学耗氧量(CODMn)变化趋势及环境影响因素[J]. 广东农业科学,41(8):161-165.
    郑志伟,胡莲,邹曦,等, 2014. 汉丰湖富营养化综合评价与水环境容量分析[J]. 水生态学杂志, 35(5):22-27.
    钟晓航,王飞儿,俞洁,等,2015. 基于WASP水质模型与基尼系数的水污染物总量分配[J]. 浙江大学学报(理学版), 42(2):181-188.
    周立红,卢亚芳,黄世玉,等, 2007. 杏林湾水库养殖容量的研究[J]. 福建师范大学学报(自然科学版), 3(23):53-57.
    朱方建, 2011. 凡纳滨对虾-草鱼混养模式的初步研究[D]. 上海:上海海洋大学.
    Beveridge M C M, 1985. Cage and pen fish farming: carrying capacity models and environmental impact[J]. FAO Fish Tech Pap, 184:255:131.
    Brigolin D, Davydov A, Pastres I P, 2008. Optimization of shellfish production carrying capacity at a farm scale[J]. Applied Mathematics and Computation, 204:532-540.
    Carver C E A, Mallet A L, 1990. Estimating the carrying capacity of a coastal inlet in terms of mussel culture[J]. Aquaculture, 88(1):39-54 .
    Charles H B, 2005. Aquaculture best management practices rule[M]. Florida: Florida Department of Agriculture and Consumer Services.
    Chen D, Lu J, Shen Y, et al, 2011. Spatio-temporal variations of nitrogen in an agricultural watershed in eastern China: catchment export, stream attenuation and discharge[J]. Environmental Pollution, 159:2989-2995.
    Christopher W M, Helmut T, Thomas L, et al, 2006. Review of recent carrying capacity models for bivalve culture and recommendations for research and management[J]. Aquaculture, 261:451-462.
    Dillon P J, Rigler R H, 1974. A test of a simple nutrient budget model predicting the phosphorus concentration in lake water[J]. Journal of the Fisheries Research Board of Canada, 31:1771-1778.
    Jon G, Kristian J, Thomas L, 2007. Guyondet. A box model of carrying capacity for suspended mussel aquaculture in Lagune de la Grande-Entree, Iles-de-la-Madeleine, Quebec[J]. Ecological modeling, 200:193-206.
    Kenneth A, Bert B, Robert, 1995. Economic growth, carrying capacity, and the environment[J]. Ecological Economics, 15:91-95.
    Li Y, Guo T, Zhou J, 2011. Research of Ecological carrying capacity comprehensive evaluation model[J]. Procedia Environmental Sciences, 11:864-868.
    Thomas Guyondet, Suzanne Roy Vladimir, 2010. Integrating multiple spatial scales in the carrying capacity assessment of a coastal ecosystem for bivalve aquaculture[J]. Journal of Sea Research, 64:341-359.
    Wu Q, Hu Y, Li S, et al, 2016. Microbial mechanisms of using enhanced ecological floating beds for entropic water improvement[J]. Bioresource Technology, 211:451-456.
    Zhou Y, Yang H, Hu H, et al, 2006. Bioremediation potential of the macroalgae Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of North China[J]. Aquaculture, 252(2/4): 264-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700