氧化应激参与放射性脑损伤的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in research on oxidative stress involved in radiation-induced brain injury
  • 作者:黄越 ; 陈乃耀 ; 赵雪聪 ; 张丁平
  • 英文作者:Huang Yue;Chen Naiyao;
  • 关键词:放射性脑损伤 ; 神经元细胞 ; 氧化应激
  • 中文刊名:SJJP
  • 英文刊名:Chinese Journal of Neuroanatomy
  • 机构:华北理工大学临床学院;华北理工大学附属医院;
  • 出版日期:2019-03-31
  • 出版单位:神经解剖学杂志
  • 年:2019
  • 期:v.35
  • 基金:2014年省政府资助临床医学优秀人才培养项目(H2013209253)
  • 语种:中文;
  • 页:SJJP201902019
  • 页数:4
  • CN:02
  • ISSN:61-1061/R
  • 分类号:115-118
摘要
放射后认知功能障碍严重影响患者生活质量。氧化应激是体内氧化与抗氧化作用失衡,使细胞内活性氧水平升高,导致脂质、蛋白质和DNA受损的应激状态。大量研究表明,辐射后神经系统中活性氧的过量产生是放射性脑损伤的重要因素之一,抗氧化治疗可能是放射后认知功能障碍的潜在治疗手段。本文针对这一领域的研究进展进行归纳总结,旨在为放射性脑损伤的防治提供思路。
        
引文
[1]Abshire D,Lang MK.The evolution of radiation therapy in treating cancer[J].Semin Oncol Nurs,2018,34(2):151-157.DOI:10.1016/j.soncn.2018.03.006.
    [2]Greene-Schloesser D,Robbins ME.Radiation-induced cognitive impairment-from bench to bedside[J].Neuro Oncol,2012,14(4):37-44.DOI:10.1093/neuonc/nos196.
    [3]Losada-Barreiro S,Bravo-Díaz C.Free radicals and polyphenols:The redox chemistry of eurodegenerative diseases[J].Eur J Med Chem,2017,133:379-402.DOI:10.1016/j.ejmech.2017.03.061.
    [4]Huang TT,Zou Y,Corniola R.Oxidative stress and adult neurogenesis-effects of radiation and superoxide dismutase deficiency[J].Semin Cell Dev Biol,2012,23(7):738-744.DOI:10.1016/j.semcdb.2012.04.003.
    [5]Huang TT,Leu D,Zou Y.Oxidative stress and redox regulation on hippocampal-dependent cognitive functions[J].Arch Biochem Biophys,2015,576:2-7.DOI:10.1016/j.abb.2015.03.014.
    [6]Lin NU,Wefel JS,Lee EQ,et al.Challenges relating to solid tumour brain metastases in clinical trials,part 2:neurocognitive,neurological,and quality-of-life outcomes[J].A report from the RANO group.Lancet Oncol,2013,14(10):407-416.DOI:10.1016/S1470-2045(13)70308-5.
    [7]Lefaki M,Papaevgeniou N,Chondrogianni N.Redox regulation of proteasome function[J].Redox Biol,2017,13:452-458.DOI:10.1016/j.redox.2017.07.005.
    [8]Wink DA,Mitchell JB.Chemical biology of nitric oxide:Insights into regulatory,cytotoxic,and cytoprotective mechanisms of nitric oxide[J].Free Radic Biol Med,1998,25(4-5):434-456.DOI:10.1016/s0891-5849(98)00092-6.
    [9]Bae YS,Oh H,Rhee SG,et al.Regulation of reactive oxygen species generation in cell signaling[J].Mol Cells,2011,32(6):491-509.DOI:10.1007/s10059-011-0276-3.
    [10]Ren F,Wang K,Zhang T,et al.New insights into redox regulation of stem cell self-renewal and differentiation[J].Biochim Biophys Acta,2015,1850(8):1518-1526.DOI:10.1016/j.bbagen.2015.02.017.
    [11]Jabeen H,Saleemi S,Razzaq H,et al.Investigating the scavenging of reactive oxygen species by antioxidants via theoretical and experimental methods[J].J Photochem Photobiol B,2018,180:268-275..DOI:10.1016/j.jphotobiol.2018.02.006.
    [12]Dr9ge W.Free radicals in the physiological control of cell function[J].Physiol Rev,2002,82(1):47-95.DOI:10.1152/physrev.00018.2001.
    [13]Citrin DE,Mitchell JB.Mechanisms of normal tissue injury from irradiation[J].Semin Radiat Oncol,2017,27(4):316-324.DOI:10.1016/j.semradonc.2017.04.001.
    [14]Farhood B,Goradel NH,Mortezaee K,et al.Intercellular communications-redox interactions in radiation toxicity;potential targets for radiation mitigation[J].J Cell Commun Signal.2018,82:47-95.DOI:10.1007/s12079-018-0473-3.
    [15]Blyth BJ,Sykes PJ.Radiation-induced bystander effects:what are they,and how relevant are they to human radiation exposures?[J].Radiat Res,2011,176(2):139-157.DOI:10.1667/rr2548.1.
    [16]Sawal HA,Asghar K,Bureik M,et al.Bystander signaling via oxidative metabolism[J].Onco Targets Ther,2017,10:3925-3940.DOI:10.2147/ott.s136076.
    [17]Ghezzi D1,Zeviani M.Assembly factors of human mitochondrial respiratory chain complexes:physiology and pathophysiology[J].Adv Exp Med Biol,2012,748:65-106.DOI:10.1007/978-1-4614-3573-0.
    [18]Brand MD.Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling[J].Free Radic Biol Med,2016,100:14-31.DOI:10.1016/j.freeradbiomed.2016.04.001.
    [19]Pieczenik SR,Neustadt J.Mitochondrial dysfunction and molecular pathways of disease[J].Exp Mol Pathol,2007,83(1):84-92.DOI:10.1016/j.yexmp.2006.09.008.
    [20]Stepien KM,Heaton R,Rankin S,et al.Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders[J].J Clin Med,2017,6(7):71.DOI:10.3390/jcm6070071.
    [21]Mc Bride HM,Neuspiel M,Wasiak S,et al.Mitochondria:more than just a powerhouse[J].Curr Biol,2006,16(14):R551-560.DOI:10.1016/j.cub.2006.06.054.
    [22]Richter C,Park JW,Ames BN.Normal oxidative damage to mitochondrial and nuclear DNA is extensive[J].Proc Natl Acad Sci,1988,85(17):6465-6467.DOI:10.1073/pnas.85.17.6465.
    [23]Zhu Z,Wang X.Significance of mitochondria DNA mutations in diseases[J].Adv Exp Med Biol.2017,1038:219-230.DOI:10.1007/978-981-10-6674-0.
    [24]Kam WWY,Banati RB.Effects of ionizing radiation on mitochondria[J].Free Radic Biol Med,2013,65:607-619.DOI:10.1016/j.freeradbiomed.2013.07.024.
    [25]Zandalinas SI,Mittler R.ROS-induced ROS release in plant and animal cells[J].Free Radica Biol Med,2018,122:21-27 DOI:10.1016/j.freeradbiomed.2017.11.028.
    [26]Lumniczky K,Szatmári T,Sáfrány G.Ionizing radiation-induced immune and inflammatory reactions in the brain[J].Front Immunol,2017,8:517.DOI:10.3389/fimmu.2017.00517.
    [27]Maier P,Hartmann L,Wenz F,et al.Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization[J].Int J Mol Sci.2016,17(1):102.DOI:10.3390/ijms17010102.
    [28]Lotze MT,Zeh HJ,Rubartelli A,et al.The grateful dead:damage-associated molecular pattern molecules and reduction/oxidation regulate immunity[J].Immunol Rev,2007,220(1):60-81.DOI:10.1111/j.1600-065x.2007.00579.x.
    [29]Yang H,Hreggvidsdottir HS,Palmblad K,et al.A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release[J].Proc Natl Acad Sci USA,2010,107(26):11942-11947.DOI:10.1073/pnas.1003893107.
    [30]Dong XR,Luo M,Fan L,et al.Corilagin inhibits the double strand break-triggered NF-kappaB pathway in irradiated microglial cells[J].Int J Mol Med,2010,25(4):531-536.DOI:10.3892/ijmm_00000374.
    [31]Yahyapour R,Motevaseli E,Rezaeyan A,et al.Mechanisms of radiation bystander and non-targeted effects:implications to radiation carcinogenesis and radiotherapy[J].Curr Radiopharm,2018,11(1):34-45.DOI:10.2174/1874471011666171229123130.
    [32]Smart D.Radiation toxicity in the central nervous system:mechanisms and strategies for injury reduction[J].Semin Radiat Oncol,2017,27(4):332-339.DOI:10.1016/j.semradonc.2017.04.006.
    [33]Sundgren PC,Cao Y.Brain irradiation:effects on normal brain parenchyma and radiation injury[J].Neuroimaging Clin N Am,2009,19(4):657-668.DOI:10.1016/j.nic.2009.08.014.
    [34]Ren X,Zou L,Zhang X,et al.Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system[J].Antioxid Redox Signal,2017,27(13):989-1010.DOI:10.1089/ars.2016.6925.
    [35]Acharya MM,Lan ML,Kan VH,Consequences of ionizing radiation-induced damage in human neural stem cells[J].Free Radic Biol Med,2010,49(12):1846-1855.DOI:10.1016/j.freeradbiomed.2010.08.021.
    [36]Tseng BP,Giedzinski E,Izadi A,et al.Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation[J].Antioxid Redox Signal,2014,20(9):1410-1422.DOI:0.1089/ars.2012.5134.
    [37]Parihar VK,Limoli CL.Cranial irradiation compromises neuronal architecture in the hippocampus[J].Proc Natl Acad Sci USA,2013,110(31):12822-12827.DOI:10.1073/pnas.1307301110.
    [38]Ye J,Jiang Z,Chen X,et al.Electron transport chain inhibitors induce microglia activation through enhancing mitochondrial reactive oxygen species production[J].Exp Cell Res,2016,340(2):315-326.DOI:10.1016/j.yexcr.2015.10.026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700