等离子体处理二氧化硅对剪切增稠液体含浸芳纶织物防刺性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Plasma-treated Silica on the Stab Resistance of Shear Thickening Fluid Impregnated Aramid Fabrics
  • 作者:刘星 ; 霍俊丽 ; 李婷婷 ; 林佳弘 ; 楼静文
  • 英文作者:LIU Xing;HUO Junli;LI Tingting;LIN Jiahong;LOU Chingwen;Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University;Tianjin and Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Tianjin Polytechnic University;Department of Fiber and Composite Materials, Feng Chia University China;Department of Chemical Engineering and Materials, Ocean College, Minjiang University;Department of Bioinformatics and Medical Engineering, Asia University;
  • 关键词:芳纶织物 ; 剪切增稠液 ; 等离子体处理 ; 防刺性能
  • 英文关键词:aramid fabric;;shear thickening fluid;;plasma treatment;;stab resistance property
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:天津工业大学纺织科学与工程学院智慧纺织与节能制品创新平台;天津工业大学教育部与天津市共建先进复合材料重点实验室;中国台湾逢甲大学纤维与复合材料学系纤维应用与制造实验室;闽江学院海洋学院;中国亚洲大学生物信息与医学工程学系;
  • 出版日期:2019-07-18
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:天津市高等学校创新团队项目(TD13-5043);; 国家自然科学基金项目(51503145;11702187;11602168);; 天津市自然科学基金(18JCQNJC03400);; 福建省自然科学基金(2018J01505;2018J01504)~~
  • 语种:中文;
  • 页:CLDB201916031
  • 页数:5
  • CN:16
  • ISSN:50-1078/TB
  • 分类号:172-176
摘要
为了实现柔性防刺装甲的轻量化以提升装甲的可穿戴性,本研究通过等离子体处理剪切增稠液(STF)中的二氧化硅粒子,以增强其剪切增稠性能,从而探讨等离子体处理对剪切增稠液含浸复合织物防刺性能的影响。利用PR-3型等离子发生器、扫描电镜(Gemini SEM500)、马尔文旋转流变仪、傅里叶变换红外光谱仪、体式显微镜(Nikon SMZ-10A)、万能强力机对等离子体处理二氧化硅(SiO_2)剪切增稠流体的流变性能,及STF含浸芳纶织物的拉伸、刀刺和锥刺性能影响进行研究。结果表明,经等离子体处理后,剪切增稠流体的临界剪切速率降至23.2 s~(-1);纯芳纶织物锥刺载荷为23.34 N,经等离子体处理后增加到41.13 N,提高76%。经过等离子体处理的SiO_2粒子表面被刻蚀,活性基团数量增加,粒子之间的摩擦阻力也增大,从而使STF的临界剪切速率减小。基于本研究的结果,可成功制备低成本、高强度的抗穿刺复合织物。
        In order to obtain the lightweight of flexible stab resistance armor to enhance its wearable, this study uses plasma treatment of silica particles in shear thickening fluid(STF) to enhance its shear thickening performance, so as to explore the impact of plasma treatment on the stab resistance performance of shear thickening fabric containing immersion. This research use PR-3 type plasma generator, scanning electron microscopy(Gemini SEM500), malvin rotational rheometer, Fourier transform infrared spectrometer, asana microscope(Nikon SMZ-10A), universal power machine on plasma processing silica(SiO_2) the rheological properties of shear thickening fluid, and STF dipped aramid fabric tensile, stab sword and cone performance effects were studied. The results showed that the critical shear rate of shear thickening fluid dropped to 23.2 s~(-1) after plasma treatment. The cone loading of pure aramid fiber fabric was 23.34 N, increased to 41.13 N after plasma treatment and increased by 76%. As the plasma treated SiO_2 particles are etched, the active groups on the particle surface are increased, and the friction resistance between particles increases, which reduces the critical shear rate. Based on the results of this study, low cost and high strength anti-puncture composite fabrics were successfully prepared.
引文
1 Nascimento L F C,Louro L H L,Monteiro S N,et al.JOM,69(10),2052.
    2 Croitoro E M,Boros I E.Sanctions of the Canadian Society for Mechanical Engineering,2007,31(2),157.
    3 Miao X H,Kong X Y,Jiang G M.Journal of Industrial,2013,43(2),281.
    4 Flambard X,Polo J.Advanced Materials,2014,36(1),30.
    5 Sun L L,Xiong D S,Xu C Y.Journal of Applied Polymer Science,2013,129(4),1922.
    6 Hou L G,Liu Y C,Zeng L K.China Ceramics Industry,2013,20(1),25 (in Chinese).侯来广,刘艳春,曾令可.中国陶瓷工业,2013,20(1),25.
    7 Peng C Y.Preparation and performance of shear thickening liquid-carbon fiber composites.Master’s Thesis,Dalian University of Technology,China,2015 (in Chinese).彭传玉.剪切增稠液-碳纤维复合材料的制备与性能研究.硕士学位论文,大连理工大学,2015.
    8 Miao X,Kong X,Jiang G.Industrial Textile,2012,43(2),281.
    9 Lepore E,Bosia F,Bonaccorso F,et al.2D Materials.2018,5(4),049501.
    10 Laha A,Majumdar A.Materials & Design,2016,89,286.
    11 Baharvandi H R,Saeedi H M,Kordani N,et al.The Journal of the Textile Institute,2016,108(3),397.
    12 Haro E E,Szpunar J A,Odeshi A G.Composites Part A:Applied Science and Manufacturing,2016,87,54.
    13 Dong-wook K,Satoshi K.Advanced Power Technology,2018,29(1),168.
    14 Hoffman R.Theory and Experimental Tests,1972,16,155.
    15 Brady J F.The Journal of Chemical Physics,1989,91,1866.
    16 Srivastava A,Majumdar A,Butola B.Critical Reviews in Solid State and Materials Sciences,2012,37(2),115.
    17 Gürgen S,Li W,Kuhan M C.Materials & Design,2016,104,312.
    18 Majumdar S,Krishnaswamy R,Sood A K.Proceedings of the Nation Academy of Sciences of the United States of America,2011,108(22),8996.
    19 Gurgen S,Li W H,Kushan M C.Materials & Design,2016,104,312.
    20 Gurgen S,Kushan M C,Li W H.Korea-Australia Rheology Journal,2016,28(2),121.
    21 Sun L,Zhu J,Wei M H,Zhang C W.Materials Research Express,2018,5(5),025702.
    22 Dai L T,Maurin I,Foldyna M,et al.Nanotechnology,2018,29(43),095201.
    23 Williams K R.Gupta K,Wasilik M.Journal of Microelectromechanical Systems,2003,12(6),761.
    24 Zhang Y C,Zhu H Y,Huang J N,et al.Acta Physica Sinica,2009,58(S1),292(in Chinese).张迎晨,朱海燕,黄婧南,等.物理学报,2009,58(S1),292.
    25 Hansen T S,West K,Hassager O,et al.Advanced Functional Materials,2007,17,3069.
    26 Lei B H.Research on modified fibers and fabrics of silicon nanowires.Master’s Thesis,Southwest Petroleum University,China,2016 (in Chinese).雷兵航.硅纳米线改性纤维和织物的研究.硕士学位论文,西南石油大学,2016.
    27 Xie Y Y,Yang H L,Ruan J M.Materials Science and Engineering of Powder Metallurgy,2010,15(1),1(in Chinese).谢元彦,杨海林,阮建明.粉末冶金材料科学与工程,2010,15(1),1.
    28 Yu K J,Sha X F,Cao H J,et al.Glass Steel/Composite Material,2012(6),47(in Chinese).俞科静,沙晓菲,曹海建,等.玻璃钢/复合材料,2012(6),47.
    29 Kang T J,Hong K H,Yoo M R.Fibers and Polymers,2010,11(5),719.
    30 Kang T J,Kim C Y,Hong K H.Journal of Applied Polymer Science,2012,124(2),1534.
    31 Hasanzadeh M,Mottaghitalab V.Journal of Materials Engineering and Performance,2014,23(4),1182.
    32 Decker M J,Halbach C J,Nam C H,et al.Composites Science and Technology,2007,67,565.
    33 Yu K J,Sha X F,Qian K,et al.Journal of Functional Materials,2012,43(23),3300 (in Chinese).俞科静,沙晓菲,钱坤,等.功能材料,2012,43(23),3300.
    34 Sha X F.Preparation and properties research of shear thickening liquid.Master’s Thesis,Jiangnan University,China,2014 (in Chinese).沙晓菲.剪切增稠液体的制备与性能研究.硕士学位论文,江南大学,2014.
    35 Mahfuz H,Clements F,Rangari V.Journal of Applied Physics,2009,105(6),064307.
    36 Laha A,Majumdar A.Materials & Design,2016,89,286.
    37 Gurgen S,Kushan M C,Li W H.Progress in Polymer Science,2017,75,48.
    38 Xu Y,Chen X G,Wang Y.S.Composite Structures,2017,163,465.
    39 He Q Y,Cao S S,Wang Y P,et al.Composites Part A-Applied Science and Manufacturig,2018,106,82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700