贮存高度和锯末覆盖厚度对猪粪NH_3和温室气体排放量及其增温潜势的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The effects of stack height and sawdust covering depth on ammonia and greenhouse gas emissions from swine manure and global warming potential
  • 作者:朱海生 ; 董红敏 ; 栾冬梅 ; 蒲德伦 ; 袁丰
  • 英文作者:ZHU Hai-sheng;DONG Hong-min;LUAN Dong-mei;PU De-lun;YUAN Feng;College of Animal Science, Southwest University;Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences;College of Animal Science and Technology, Northeast Agricultural University;
  • 关键词:猪粪 ; 贮存高度 ; 锯末覆盖厚度 ; NH3和温室气体排放
  • 英文关键词:swine manure;;stack heights;;sawdust covering depths;;ammonia and greenhouse gas emissions
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:西南大学动物科学学院;中国农业科学院农业环境与可持续发展研究所;东北农业大学动物科学技术学院;
  • 出版日期:2019-04-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.284
  • 基金:西南大学校地合作项目(41005617)~~
  • 语种:中文;
  • 页:NHBH201904026
  • 页数:7
  • CN:04
  • ISSN:12-1347/S
  • 分类号:223-229
摘要
为研究贮存高度和锯末覆盖厚度对猪粪NH3和温室气体排放量及其增温潜势的影响,以猪粪为贮存材料,锯末为覆盖材料,试验设2种猪粪贮存高度(20 cm和40 cm)和3种锯末覆盖高度(0、10 cm和20 cm),共6个处理,每个处理3个重复。通过动态箱技术对猪粪贮存过程中NH3和温室气体排放进行不间断测试,每小时测量一次进气口和排气口NH3、N2O、CH4和CO2的质量浓度,进而计算增温潜势,共测量42 d。结果表明:猪粪便的贮存高度对各种气体排放量均有显著影响,与20 cm贮存高度的猪粪相比,40 cm贮存高度猪粪的NH3、N2O和CO2排放量显著降低,而CH4排放量显著增加。锯末覆盖降低了猪粪贮存过程中NH3和CO2的排放量,但是增加了CH4的排放量;锯末覆盖对不同贮存高度猪粪N2O排放量影响不同,锯末覆盖增加了20 cm贮存高度猪粪N2O排放量,却降低了40 cm贮存高度猪粪N2O排放量。各处理组单位质量猪粪排放的总温室气体增温潜势为36.62~62.83 g·kg-1(CO2基础)。覆盖可以减少猪粪贮存过程中总温室气体增温潜势11.59%~23.61%,但差异不显著。与20 cm贮存高度的猪粪相比,40 cm贮存高度显著降低了猪粪总温室气体增温潜势达36.26%~41.48%。研究表明,增加猪粪贮存高度可以减少猪粪贮存过程中总温室气体的增温潜势。
        To study the effects of stack height and sawdust covering depth on ammonia and greenhouse gas(GHG)emissions from swine manure, and the global warming potential, two stack heights(20 cm and 40 cm)of swine manure and three covering depths of sawdust(0,10 cm, and 20 cm)were selected to form six treatments. Each treatment was carried out in triplicate. Continuous measurements of ammonia and GHG emissions were carried out using a dynamic system. The experiment lasted 42 days. The results showed that a higher manure stack(40 cm)significantly reduced NH3, N2 O, and CO2 emissions, in terms of emissions per kilogram initial manure. However, CH4 emissions showed a completely different trend from that of the NH3, N2 O, and CO2 emissions. Sawdust covering reduced the cumulative NH3 and CO2 emissions from swine manure during storage, in terms of emissions per kilogram initial manure, but simultaneously increased the cumulative CH4 emissions. Sawdust covering had different effects on the N2 O emissions from swine manure at different stack heights. The covering increased the cumulative N2 O emission for the 20 cm stack height of swine manure, but reduced it for the 40 cm stack height. The cumulative GHG emissions from swine manure were 36.62~62.83 g·kg-1 of initial manure weight(based on CO2). Sawdust covering reduced the total GHG emission by 11.59%~23.61%, but there was no significant difference between covered and uncovered samples. Compared with that for the 20 cm stack height of swine manure, the total GHG emission reduction was 36.26%~41.48% for the 40 cm stack height. A higher stack produced the least GHG emissions from swine manure during storage.
引文
[1] Mathot M, Decruyenaere V, Lambert R. Deep litter removal frequency rate influences on greenhouse gas emissions from barns for beef heifers and from manure stores[J]. Agriculture, Ecosystems and Environment,2016, 233(1):94-105.
    [2] Sommer S G, Pedersen S O, Sogaard H T. Greenhouse gas emissions from stored livestock slurry[J]. J Environ Qual, 2000, 29(3):744-751.
    [3] Dong H M, Zhu Z P, Zhou Z K, et al. Greenhouse gas emissions from swine manure stored at different stack heights[J]. Animal Feed Science and Technology, 2011, 166/167:557-561.
    [4] Mosier A, Kroeze C, Nevison C, et al. Closing the global N2O budget:Nitrous oxide emissions through the agricultural nitrogen cycle-OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology[J]. Nutrient Cycling in Agroecosystems, 1998, 52(2/3):225-248.
    [5] Steed J, Hashimoto A G. Methane emissions from typical manure management-systems[J]. Bioresource Technology, 1994, 50(2):123-130.
    [6] Li H, Xin H W. Lab-scale assessment of gaseous emissions from laying-hen manure storage as affected by physical and environmental factors[J]. Transactions of the American Society of Agricultural and Biological Engineers, 2010, 53(2):593-604.
    [7]游玉波,董红敏,朱志平,等.堆积肉牛粪便甲烷排放影响因子试验[J].农业工程学报, 2008, 24(12):168-172.YOU Yu-bo, DONG Hong-min, ZHU Zhi-ping, et al. Experiments on influencing factors of methane emissions from beef cattle manure stack[J]. Transactions of the CSAE, 2008, 24(12):168-172.
    [8]陆日东,李玉娥,石锋,等.不同堆放方式对牛粪温室气体排放的影响[J].农业环境科学学报, 2008, 27(3):1235-1241.LU Ri-dong, LI Yu-e, SHI Feng, et al. Effect of compost on the greenhouse gases emission from dairy manure[J]. Journal Agro-Environment Science, 2008, 27(3):1235-1241.
    [9] Wang J J, Duan C Q, Ji Y Q, et al. Methane emissions during storage of different treatments from cattle manure in Tianjin[J]. Journal of Environmental Science, 2010, 22(10):1564-1569.
    [10]朱海生,董红敏,左福元,等.覆盖及堆积高度对肉牛粪便温室气体排放的影响[J].农业工程学报, 2014, 30(24):225-231.ZHU Hai-sheng, DONG Hong-min, ZUO Fu-yuan, et al. Effect of covering on greenhouse gas emissions from beef cattle solid manure stored at different stack heights[J]. Transactions of the CSAE, 2014, 30(24):225-231.
    [11]朱海生,左福元,董红敏,等.覆盖材料和厚度对堆存牛粪氨气和温室气体排放的影响[J].农业工程学报, 2015, 31(6):223-229.ZHU Hai-sheng, ZUO Fu-yuan, DONG Hong-min, et al. Effects of covering materials and sawdust covering depths on ammonia and greenhouse gase emissions from cattle manure during storage[J].Transactions of the CSAE, 2015, 31(6):223-229.
    [12] IPCC. Climate change[M]//Contribution of working groupⅠto the fifth assessment report of the intergovernmental panel on climate change. UK:Cambridge University Press, 2013:714.
    [13] Hayashi K, Nishimur S, Yagi K. Ammonia volatilization from a paddy field following applications of urea:Rice plants are both an absorber and an emitter for atmospheric ammonia[J]. Science of the Total Environment, 2008, 390(2/3):485-494.
    [14]中华人民共和国农业部.有机肥水分的测定NY 525—2012[S].北京:中国标准出版社, 1995.Ministry of Agriculture of PRC. Test methods of moisture content of organic fertilizer NY/T 1302—1995[S]. Beijing:China Standards Press, 1995.
    [15]中华人民共和国农业部.有机肥料NY/T 302—1995[S].北京:中国标准出版社, 1995.Ministry of Agriculture of PRC. Organic fertilizer NY 525—2012[S].Beijing:China Standards Press, 2012.
    [16] Viguria M, Sanz-Cobe?a A, María L D, et al. Ammonia and greenhouse gases emission from impermeable covered storage and land application of cattle slurry to bare soil[J]. Agriculture, Ecosystems and Environment, 2015, 199:261-271.
    [17] Browne J D, Gilkinson S R, Frost J P. The effects of storage time and temperature on biogas production from dairy cow slurry[J]. Biosystems Engineering, 2015, 129(1):48-56.
    [18] Pratt E V, Rose S P, Keeling A A. Effect of ambient temperature on losses of volatile nitrogen compounds from stored laying hen manure[J]. Bioresource Technology, 2002, 84(2):203-205.
    [19] Carr L E, Wheaton F W, Douglass L W. Empirical models to determine ammonia concentrations from broiler chicken litter[J]. Transactions of the ASAE, 1990, 33(4):1337-1340.
    [20] Clanton C J, Schmidt D R, Nicolai R E, et al. Geotextile fabric-straw manure storage covers for odor, hydrogen sulfide and ammonia control[J]. Applied Engineering for Agriculture, 2001, 17(6):849-858.
    [21] Chadwick D R. Emissions of ammonia, nitrous oxide and methane from cattle manure heaps:Effect of compaction and covering[J]. Atmospheric Environment, 2005, 39(4):787-799.
    [22] Sommer S G, Christensen B T, Nielsen N E, et al. Ammonia volatilization during storage of cattle and pig slurry:Effect of surface cover[J]. J Agric Sci, 1993, 121(1):63-71.
    [23] Protejoie S, Martinez J, Guiziou F, et al. Effect of covering pig slurry stores on the ammonia emission processes[J]. Bioresource Technology,2003, 87(3):199-207.
    [24] Phillips V R, Cowell D A, Sneath R W, et al. An assessment of ways to abate ammonia emissions from UK livestock buildings and waste stores. Part 1:Ranking exercise[J]. Bioresource Technology, 1999, 70(2):143-155.
    [25] Wrage N, Velthof G L, van Beusichem M L, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology and Biochemistry, 2001, 33(12/13):1723-1732.
    [26]陆日东,李玉娥,万运帆,等.堆放奶牛粪便温室气体排放及影响因子研究[J].农业工程学报, 2007, 23(8):198-204.LU Ri-dong, LI Yu-e, WAN Yun-fan, et al. Emission of greenhouse gases from stored dairy manure and influence factors[J]. Transactions of the CSAE, 2007, 23(8):198-204.
    [27] Berg W, Brunsch R, Pazsiczki I. Greenhouse gas emissions from covered slurry compared with uncovered during storage[J]. Agriculture,Ecosystems and Environment, 2006, 112(2/3):129-134.
    [28] Amon B, Kryvoruchko V, Amon T, et al. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment[J]. Agriculture, Ecosystems and Environment, 2006, 112(2/3):153-162.
    [29] Philippe F X, Nicks B. Review on greenhouse gas emissions from pig houses:Production of carbon dioxide, methane and nitrous oxide by animals and manure[J]. Agriculture, Ecosystems and Environment,2015, 119(1):10-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700