污水处理厂沉积池中反硝化过程及其反硝化速率分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on Denitrification Process and Denitrification Rate in the Sedimentary Pond of Sewage Treatment Plant
  • 作者:邓茗濂
  • 英文作者:DENG Ming-lian;College of Resources and Environment, Chengdu University of Information Technology;
  • 关键词:污水处理 ; 沉积池 ; 反硝化 ; 速率
  • 英文关键词:Sewage treatment;;Sedimentation pool;;Denitrification;;Rate
  • 中文刊名:SYHH
  • 英文刊名:Contemporary Chemical Industry
  • 机构:成都信息工程大学资源环境学院;
  • 出版日期:2019-03-28
  • 出版单位:当代化工
  • 年:2019
  • 期:v.48;No.278
  • 语种:中文;
  • 页:SYHH201903022
  • 页数:4
  • CN:03
  • ISSN:21-1457/TQ
  • 分类号:75-78
摘要
为考察不同的碳源对缺氧反硝化效率的影响,分析污水处理厂沉积池中反硝化过程的反硝化速率。研究结果表明:反硝化反应分3个阶段:第一阶段(0~60 min),运用了可快速迚行生物降解的碳源;第二阶段(60~370 min),已经基本消耗完毕可生物降解的溶解性有机物;第三阶段(370~530 min),NO_3-N的降解速度继续减缓。SCOD与COD的浓度的变化觃律和NO_3-N浓度变化觃律相似。反硝化速率各阶段反应时间变化与NO3-N浓度呈线性关系,因此根据多段动力学方程得到三阶段的反硝化速率。随着时间的不断增加,反硝化速率逐渐减小。
        In order to investigate the influence of different carbon sources on the efficiency of anoxic denitrification,the denitrification rate during the denitrification process in the sedimentary pond of sewage treatment plant was analyzed. The results showed that the denitrification reaction was divided into three stages: in the first stage of 0~60 min, the biodegradable carbon source was used quickly; in the second stage of 60 ~ 370 min, dissolved organic matter that can be biodegradable was basically consumed. In the third stage of 370 ~ 530 min, the degradation rate of NO_3-N continued to slow down. The variation trend of SCOD and COD concentration was similar to that of NO_3-N concentration. The change of denitrification rate at each stage was linearly related to NO3-N concentration, so the denitrification rate at three stages was obtained according to the multi-stage kinetic equation. As the time went on, the denitrification rate decreased gradually.
引文
[1]杨玉兵,杨庆,李洋,等.基于同位素技术的短程硝化过程N2O产生途径[J].环境科学,2018(11):1-12
    [2]张彤,郭智慧,马天奇,孔繁鑫,郭春梅,陈迚富.炼油催化剂废水短程硝化反硝化脱氮技术研究[J].当代化工,2017,46(09):1737-1740.
    [3]蔡云波.生物活性碳反应器强化生活污水同步硝化反硝化:C/N影响研究[J].环境科学与管理,2018,43(05):91-94.
    [4]陈启军.废水处理生物脱氮除磷工艺研究[J].当代化工研究,2018(06):63-64.
    [5]安芳娇,黄剑明,黄利,等.基质比对厌氧氨氧化耦合反硝化脱氮除碳的影响[J].环境科学,2018(11):1-8.
    [6]吴宍廸.反硝化除磷COD降解集成技术在石化废水处理中的应用[J].石油石化节能,2018(05):18-21.
    [7]尹志轩,谢丼,周琪,等.碳源性质和COD/NO3-N对硝酸盐还原途径的影响[J].工业水处理,2018, 38(05):58-61.
    [8]贾丹,李卓然,钟志国. pH对新型后置反硝化系统生物脱氮除磷的影响[J].水处理技术,2018,44(05):79-83.
    [9]徐姮,陆少鸣,李嘉树,等.前置+后置反硝化滤池强化脱氮效果研究[J].水处理技术,2018,44(05):84-87+102.
    [10]佘健,李刚,杨琴,等. Anammox反应器的高效运行及有机物抑制效应[J].环境科学与技术,2018,41(04):127-133.
    [11]杨婷,张延光.厌氧流化床生物技术处理高硝态氮化工废水[J].环境科技,2018,31(02):46-48.
    [12]巩有奎,李永波,苗志加.不同迚水方式下短程反硝化过程中N2O产量[J].环境工程,2018(10):59-63.
    [13]毕春雪,于德爽,杜世明,王晓霞,陈光辉,王钧,巩秀珍,都叶奇.乙酸钠作为碳源不同污泥源短程反硝化过程亚硝酸盐积累特性[J].环境科学,2019(02):1-10.
    [14]林子雨,党岩,刘钊,孙德智.碳源和COD/N对短程反硝化处理垃圾焚烧渗沥液产N2O的影响与调控[J].环境工程学报,2018,12(08):2178-2184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700