杆菌细胞形变的机制与功能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Morphological transformation of rod-shaped bacterial cells: mechanisms and biological impacts
  • 作者:王蕾 ; 邹琳 ; 李梦洁 ; 侯琳琳 ; 陈小明 ; 刘伟 ; 孙桂芹 ; 陈力
  • 英文作者:WANG Lei;ZOU Lin;LI Mengjie;HOU Linlin;CHEN Xiaoming;LIU Wei;SUN Guiqin;CHEN Li;Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University;Key Laboratory of Research on Hydraulic and Hydro-Power Equipment Surface Engineering Technology of Zhejiang Province;College of Medical Technology, Zhejiang Chinese Medical University;
  • 关键词:形变 ; 丝状形变 ; 逃逸宿主免疫系统 ; 抗生素耐药
  • 英文关键词:Morphological transformation;;Filamentation;;Escape from host immune system;;Antibiotic resistance
  • 中文刊名:WSWG
  • 英文刊名:Journal of Microbes and Infections
  • 机构:复旦大学基础医学院医学分子病毒学教育部/卫生部重点实验室;浙江省水利水电装备表面工程技术研究重点实验室;浙江中医药大学医学技术学院;
  • 出版日期:2019-04-23
  • 出版单位:微生物与感染
  • 年:2019
  • 期:v.14;No.62
  • 基金:国家新药创制重大专项(2014ZX09101-046-004);; 国家自然科学基金(31600644);; 浙江省水利水电装备表面工程技术研究重点实验室开放基金(2017SLKL004)
  • 语种:中文;
  • 页:WSWG201902007
  • 页数:7
  • CN:02
  • ISSN:31-1966/R
  • 分类号:39-45
摘要
细菌的形态是细菌分类与鉴定的核心指标。虽然在分类上细菌的基本形态有球形、杆状、弧形和螺旋形,但在不同生理和病理条件下细菌的形态会发生改变。本文对细菌的基本形态转变和杆菌的丝状形变分子机制进行了概述,并归纳了在营养缺乏、放射污染、对抗宿主免疫系统和抗生素处理等条件下细菌产生形态改变的生物学及临床意义。
        Cell shape is a basic core feature for bacterial classification and identification. Although a bacterium could be defined as coccus, bacillus, vibrio or spirochete, morphological transformations were observed under various physiological and pathological conditions. In this paper, the molecular mechanisms of rod-shaped bacterial morphological transformation are reviewed, and the biological impacts of morphological transformation under nutritional deficiency, radiation, antibiotic treatment and attacking by host immune systems are discussed.
引文
[1] 周德庆. 微生物学教程 [M]. 第3版. 北京: 高等教育出版社,2011: 63.
    [2] 袁正宏. 医学微生物学 [M]. 上海: 复旦大学出版社, 2016: 20-22.
    [3] Hiraga S, Niki H, Ogura T, Ichinose C, Mori H, Ezaki B, Jaffé A. Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells [J]. J Bacteriol, 1989, 171(3): 1496-1505.
    [4] Ogura T, Bouloc P, Niki H, D’ari R, Hiraga S, Jaffé A. Penicillin-binding protein 2 is essential in wild-type Escherichia coli but not in lov or cya mutants [J]. J Bacteriol, 1989, 171(6): 3025-3030.
    [5] Scheffers DJ, Pinho MG. Bacterial cell wall synthesis: new insights from localization studies [J]. Microbiol Mol Biol Rev, 2005, 69(4): 585-607.
    [6] Jones LJ, Carballido-López R, Errington J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis [J]. Cell, 2001, 104(6): 913-922.
    [7] Kruse T, Bork-Jensen J, Gerdes K. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex [J]. Mol Microbiol, 2005, 55(1): 78-89.
    [8] Kruse T, M?ller-Jensen J, L?bner-Olesen A, Gerdes K. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli [J]. EMBO J, 2003, 22(19): 5283-5292.
    [9] Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L. MreB actin-mediated segregation of a specific region of a bacterial chromosome [J]. Cell, 2005, 120(3): 329-341.
    [10] Iwai N, Nagai K, Wachi M. Novel S-benzylisothiourea compound that induces spherical cells in Escherichia coli probably by acting on a rod-shape-determining protein(s) other than penicillin-binding protein 2 [J]. Biosci Biotechnol Biochem, 2002, 66(12): 2658-2662.
    [11] Errington J. Bacterial morphogenesis and the enigmatic MreB helix [J]. Nat Rev Microbiol, 2015, 13(4): 241-248.
    [12] Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis [J]. Science, 2011, 333(6039): 222-225.
    [13] Domínguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-S?ldner R, Carballido-López R. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria [J]. Science, 2011, 333(6039): 225-228.
    [14] van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS, Shaevitz JW, Gitai Z. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly [J]. Proc Natl Acad Sci USA, 2011, 108(38): 15822-15827.
    [15] Shi H, Bratton BP, Gitai Z, Huang KC. How to build a bacterial cell: MreB as the foreman of E. coli construction [J]. Cell, 2018, 172(6): 1294-1305.
    [16] Ausmees N, Kuhn JR, Jacobs-Wagner C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape [J]. Cell, 2003, 115(6): 705-713.
    [17] Cabeen MT, Charbon G, Vollmer W, Born P, Ausmees N, Weibel DB, Jacobs-Wagner C. Bacterial cell curvature through mechanical control of cell growth [J]. EMBO J, 2009, 28(9): 1208-1219.
    [18] Bartlett TM, Bratton BP, Duvshani A, Miguel A, Sheng Y, Martin NR, Nguyen JP, Persat A, Desmarais SM, Vannieuwenhze MS, Huang KC, Zhu J, Shaevitz JW, Gitai Z. A periplasmic polymer curves Vibrio cholerae and promotes pathogenesis [J]. Cell, 2017, 168(1-2): 172-185.e15.
    [19] Sycuro LK, Pincus Z, Gutierrez KD, Biboy J, Stern CA, Vollmer W, Salama NR. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori’s helical shape and stomach colonization [J]. Cell, 2010, 141(5): 822-833.
    [20] Bonis M, Ecobichon C, Guadagnini S, Prévost MC, Boneca IG. A M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence [J]. Mol Microbiol, 2010, 78(4): 809-819.
    [21] Sycuro LK, Wyckoff TJ, Biboy J, Born P, Pincus Z, Vollmer W, Salama NR. Multiple peptidoglycan modification networks modulate Helicobacter pylori’s cell shape, motility, and colonization potential[J]. PLoS Pathog, 2012, 8(3): e1002603.
    [22] Klieneberger E.The natural occurrence of pleuropneumonia-like organism in apparent symbiosis with Streptobacillus moniliformis and other bacteria [J/OL]. J Pathol Bacteriol, 1935, 40(1): 93-105. https://doi.org/10.1002/path.1700400108.
    [23] Joseleau-Petit D, Liébart JC, Ayala JA, D’Ari R. Unstable Escherichia coli L forms revisited: growth requires peptidoglycan synthesis [J]. J Bacteriol, 2007, 189(18): 6512-6520.
    [24] Allan EJ. Induction and cultivation of a stable L-form of Bacillus subtilis [J]. J Appl Bacteriol, 1991, 70(4): 339-343.
    [25] Leaver M, Dominguez-Cuevas P, Coxhead JM, Daniel RA, Errington J. Life without a wall or division machine in Bacillus subtilis [J]. Nature, 2009, 457(7231): 849-853.
    [26] Beaman BL. Induction of L-phase variants of Nocardia caviae within intact murine lungs [J]. Infect Immun, 1980, 29(1): 244-251.
    [27] Beaman BL, Scates SM. Role of L-forms of Nocardia caviae in the development of chronic mycetomas in normal and immunodeficient murine models [J]. Infect Immun, 1981, 33(3): 893-907.
    [28] Woo PC, Wong SS, Lum PN, Hui WT, Yuen KY. Cell-wall-deficient bacteria and culture-negative febrile episodes in bone-marrow-transplant recipients [J]. Lancet, 2001, 357(9257): 675-679.
    [29] Fuller E, Elmer C, Nattress F, Ellis R, Horne G, Cook P, Fawcett T. Beta-lactam resistance in Staphylococcus aureus cells that do not require a cell wall for integrity[J]. Antimicrob Agents Chemother, 2005, 49(12): 5075-5080.
    [30] Kawai Y, Mercier R, Wu LJ, Domínguez-Cuevas P, Oshima T, Errington J. Cell growth of wall-free L-form bacteria is limited by oxidative damage [J]. Curr Biol, 2015, 25(12): 1613-1618.
    [31] Hutchison EA, Miller DA, Angert ER. Sporulation in bacteria: beyond the standard model [J]. Microbiol Spectr, 2014. doi: 10.1128/microbiolspec.tbs-0013-2012.
    [32] Piggot PJ, Hilbert DW. Sporulation of Bacillus subtilis [J]. Curr Opin Microbiol, 2004, 7(6): 579-586.
    [33] Hoch JA. Genetics of bacterial sporulation [J]. Adv Genet, 1976, 18: 69-98.
    [34] Nordstrom K, Bernander R, Dasgupta S. The Escherichia coli cell cycle: one cycle or multiple independent processes that are co-ordinated?[J]. Mol Microbiol, 1991, 5(4): 769-774.
    [35] Witkin EM. Ultraviolet mutagenesis and the SOS response in Escherichia coli: a personal perspective [J]. Environ Mol Mutagen, 1989, 14(Suppl 16): 30-34.
    [36] Radman M. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis [J]. Basic Life Sci, 1975, 5A: 355-367.
    [37] Michel B. After 30 years of study, the bacterial SOS response still surprises us [J]. PLoS Biol, 2005, 3(7): e255.
    [38] Mukherjee A, Cao C, Lutkenhaus J. Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli [J]. Proc Natl Acad Sci USA, 1998, 95(6): 2885-2890.
    [39] Trusca D, Scott S, Thompson C, Bramhill D. Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein [J]. J Bacteriol, 1998, 180(15): 3946-3953.
    [40] Cordell SC, Robinson EJ, Lowe J. Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ[J]. Proc Natl Acad Sci USA, 2003, 100(13): 7889-7894.
    [41] Justice SS, García-Lara J, Rothfield LI. Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the Escherichia coli division machinery[J]. Mol Microbiol, 2000, 37(2): 410-423.
    [42] Sassanfar M, Roberts JW. Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication [J]. J Mol Biol, 1990, 212(1): 79-96.
    [43] Mizusawa S, Gottesman S. Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein[J]. Proc Natl Acad Sci USA, 1983, 80(2): 358-362.
    [44] Errington J, Daniel RA, Scheffers DJ. Cytokinesis in bacteria [J]. Microbiol Mol Biol Rev, 2003, 67(1): 52-65
    [45] Ward JE Jr, Lutkenhaus J. Overproduction of FtsZ induces minicell formation in E. coli[J]. Cell, 1985, 42(3): 941-949.
    [46] Lutkenhaus J, Addinall SG. Bacterial cell division and the Z ring [J]. Annu Rev Biochem, 1997, 66: 93-116.
    [47] Dewar SJ, Dorazi R. Control of division gene expression in Escherichia coli [J]. FEMS Microbiol Lett, 2000, 187(1): 1-7.
    [48] Hirota Y, Ryter A, Jacob F. Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division [J]. Cold Spring Harb Symp Quant Biol, 1968, 33: 677-693.
    [49] Harry E, Monahan L, Thompson L. Bacterial cell division: The mechanism and its precison [J]. Int Rev Cytol, 2006, 253: 27-94.
    [50] Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality[J]. Science, 2004, 305(5690): 1629-1631.
    [51] Jiang H, Si F, Margolin W, Sun SX. Mechanical control of bacterial cell shape [J]. Biophys J, 2011, 101(2): 327-335.
    [52] Pine L, Boone CJ. Comparative cell wall analyses of morphological forms within genus Actinomyces[J]. J Bacteriol, 1967, 94(4): 875-883.
    [53] Schapiro JM, Libby SJ, Fang FC. Inhibition of bacterial DNA replication by zinc mobilization during nitrosative stress[J]. Proc Natl Acad Sci USA, 2003, 100(14): 8496-8501.
    [54] Justice SS, Hunstad DA, Seed PC, Hultgren SJ. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection [J]. Proc Natl Acad Sci USA, 2006, 103(52): 19884-19889.
    [55] Chen K, Sun GW, Chua KL, Gan YH. Modified virulence of antibiotic-induced Burkholderia pseudomallei filaments[J]. Antimicrob Agents Chemother, 2005, 49(3): 1002-1009.
    [56] Justice SS, Hunstad DA, Cegelski L, Hultgren SJ. Morphological plasticity as a bacterial survival strategy [J]. Nat Rev Microbiol, 2008, 6(2): 162-168.
    [57] Steinberger RE, Allen AR, Hansa HG, Holden PA. Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa-unsaturates biofilms[J]. Microb Ecol, 2002, 43(4): 416-423.
    [58] Ruoff KL. Nutritionally variant streptococci[J]. Clin Microbiol Rev, 1991, 4(2): 184-190.
    [59] Janion C, Sikora A, Nowosielska A, Grzesiuk E. Induction of the SOS response in starved Escherichia coli [J]. Environ Mol Mutagen, 2002, 40(2): 129-133.
    [60] Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis [J]. Proc Natl Acad Sci USA, 2004, 101(5): 1333-1338.
    [61] Mysorekar IU, Hultgren SJ. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract [J]. Proc Natl Acad Sci USA, 2006, 103(38): 14170-14175.
    [62] Ammendola A, Geisenberger O, Andersen JB, Givskov M, Schleifer KH, Eberl L. Serratia liquefaciens swarm cells exhibit enhanced resistance to predation by Tetrahymena sp[J]. FEMS Microbiol Lett, 1998, 164(1): 69-75.
    [63] Corno G, Jürgens K. Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity [J]. Appl Environ Microbiol, 2006, 72(1): 78-86.
    [64] Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones [J]. Microbiol Mol Biol Rev, 1997, 61(3): 377-392.
    [65] Diver JM, Wise R. Morphological and biochemical changes in Escherichia coli after exposure to ciprofloxacin [J]. J Antimicrob Chemother, 1986, 18(Suppl D): 31-41.
    [66] Bos J, Zhang QC, Vyawahare S, Rogers E, Rosenberg SM, Austin RH. Emergence of antibiotic resistance from multinucleated bacterial filaments [J]. Proc Natl Acad Sci USA, 2015, 112(1): 178-183.
    [67] Diver JM. Quinolone uptake by bacteria and bacterial killing [J]. Rev Infect Dis, 1989, 11(Suppl 5): S941-S946.
    [68] Cirz RT, Chin JK, Andes DR, de Crécy-Lagard V, Craig WA, Romesberg FE. Inhibition of mutation and combating the evolution of antibiotic resistance [J]. PLoS Biol, 2005, 3(6): e176.
    [69] Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch [J]. Science, 2004, 305(5690): 1622-1625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700