机械球磨法制备Sn_4P_3/RGO钠离子电池负极材料及其电化学性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemical Properties for Sn_4P_3/RGO by Mechanical Ball Milling Method as Anode Materials for Sodium Ion Batteries
  • 作者:杨皖皖 ; 孙硕 ; 王健 ; 张敬远 ; 钱斌 ; 陶石 ; 韩志达
  • 英文作者:YANG Wanwan;SUN Shuo;WANG Jian;ZHANG Jingyuan;QIAN Bin;TAO Shi;HAN Zhida;School of Materials Science and Engineering,China University of Mining and Technology;School of Mechanical and Electric Engineering,Soochow University;College of Chemistry,Chemical Engineering and Materials Science,Soochow University;School of Physics and Electronic Engineering,Changshu Institute of Technology;Soochow University;Jiangsu Laboratory of Advanced Functional Materials,Changshu Institute of Technology;
  • 关键词:钠离子电池 ; Sn_4P_3/RGO ; 负极材料 ; 机械球磨
  • 英文关键词:sodium ion battery;;Sn_4P_3/RGO;;anode material;;mechanical ball milling
  • 中文刊名:CSGX
  • 英文刊名:Journal of Changshu Institute of Technology
  • 机构:中国矿业大学材料科学与工程学院;苏州大学机电与工程学院;常熟理工学院物理与电子工程学院;苏州大学材料与化学化工学部;苏州大学;江苏省新型功能材料重点建设实验室;
  • 出版日期:2019-03-20
  • 出版单位:常熟理工学院学报
  • 年:2019
  • 期:v.33;No.204
  • 语种:中文;
  • 页:CSGX201902002
  • 页数:5
  • CN:02
  • ISSN:32-1749/Z
  • 分类号:11-15
摘要
以红磷、锡粉和还原氧化石墨烯作为主要反应物,利用机械球磨法成功合成磷化锡/还原氧化石墨烯(Sn_4P_3/RGO)复合材料,并用作钠离子电池的负极材料.采用X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、蓝电测试系统和电化学工作站对所获得的样品粉末进行物相、微观形貌以及电化学性能表征.与纯相Sn_4P_3相比, Sn_4P_3/RGO复合材料作为钠离子电池负极材料展示出较为优异的电化学性能.
        Tin phosphide/reduced graphene oxide(Sn_4P_3/RGO) composites were successfully synthesized by mechanical ball milling with red phosphorus, tin powder and reduced graphene oxide as main reactants and used as anode materials for sodium ion batteries. The phase, morphology and electrochemical properties of the obtained sample powders were characterized by X-ray powder diffractometry(XRD), scanning electron microscopy(SEM), LAND CT2001 A systems, and electrochemical workstation. Compared with the pure phase Sn_4P_3, the Sn_4P_3/RGO composite exhibits an excellent electrochemical performance as anode material for sodium ion batteries.
引文
[1]NOORDEN VAN R.The rechargeable revolution:A better battery[J].Nature,2014,507(7490):26-28.
    [2]GOODENOUGH J B,PARK K S.The Li-ion rechargeable battery:a perspective[J].Journal of the American Chemical Society,2013,135(4):1167-1176.
    [3]GOODENOUGH J B.Electrochemical energy storage in a sustainable modern society[J].Energy&Environmental Science,2013,7(1):14-18.
    [4]SLATER M D,KIM D,LEE E,et al.Sodium-Ion Batteries[J].Advanced Functional Materials,2013,23(8):947-958.
    [5]GENG H,YANG J,DAI Z,et al.Co9S8/Mo S2 yolk-shell spheres for advanced Li/Na storage[J].Small,2017,13(14):1603490.
    [6]LIU Y,ZHANG N,JIAO L,et al.Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries[J].Advanced Materials,2016,27(42):6702-6707.
    [7]ZHANG Z,ZHANG J,ZHAO X,et al.Core-sheath structured porous carbon nanofiber composite anode material derived from bacterial cellulose/polypyrrole as an anode for sodium-ion batteries[J].Carbon,2015,95:552-559.
    [8]KOMABA S,MURATA W,ISHIKAWA T,et al.Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries[J].Advanced Functional Materials,2011,21(20):3859-3867.
    [9]TANG K,FU L,WHITE R J,et al.Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J].Advanced Energy Materials,2012,2(7):873-877.
    [10]CAO Y,XIAO L,SUSHKO M L,et al.Sodium ion insertion in hollow carbon nanowires for battery applications[J].Nano Letters,2012,12(7):3783-3787.
    [11]SHOAIB A,HUANG Y,LIU J,et al.Ultrathin single-crystalline Ti O2 nanosheets anchored on graphene to be hybrid network for high-rate and long cycle-life sodium battery electrode application[J].Journal of Power Sources,2017,342:405-413.
    [12]CAO Y,XIAO L,WANG W,et al.Chem Inform Abstract:Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J].Advanced Materials,2011,23(28):3155-3160.
    [13]LI W J,YANG Q R,CHOU S L,et al.Cobalt phosphide as a new anode material for sodium storage[J].Journal of Power Sources,2015,294:627-632.
    [14]FULLENWARTH J,DARWICHE A,SOARES A,et al.Ni P3:a promising negative electrode for Li-and Na-ion batteries[J].Journal of Materials Chemistry A,2014,2(7):2050-2059.
    [15]KIM Y,PARK Y,CHOI A,et al.An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J].Advanced Materials,2013,25(22):3010-3010.
    [16]LI W,CHOU S L,WANG J Z,et al.Sn4+xP3@amorphous Sn-P composites as anodes for sodium-ion batteries with low cost,high capacity,long life,and superior rate capability[J].Advanced Materials,2014,26(24):4037-4042.
    [17]KOVNIR K A,KOLEN’KO Y V,RAY S.A facile high-yield solvothermal route to tin phosphide Sn4P3[J].Journal of Solid State Chemistry,2007,179(12):3756-3762.
    [18]KIM Y U,LEE C K,SOHN H J,et al.Reaction mechanism of tin phosphide anode by mechanochemical method for lithium secondary batteries[J].Journal of the Electrochemical Society,2004,151(6):A933-A937.
    [19]WU J J,FU Z W.Pulsed-laser-deposited Sn4P3 electrodes for lithium-ion batteries[J].Electrochemical Society,2009,156:A22-A26.
    [20]MA L,YAN P,WU S,et al.Engineering tin phosphides@carbon yolk-shell nanocube structures as a highly stable anode material for sodium-ion batteries[J].Journal of Materials Chemistry A,2017,5(32):16994-17000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700